849 research outputs found

    Relativistic Quark Spin Coupling Effects in the Nucleon Electromagnetic Form Factors

    Full text link
    We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found.Comment: 13 pages, needs axodraw.ps and axodraw.sty for diagrams of Fig.

    Relativistic Quark Spin Coupling Effects in the Correlations Between Nucleon Electroweak Properties

    Get PDF
    We investigate the effect of different relativistic spin couplings of constituent quarks on nucleon electroweak properties. Within each quark spin coupling scheme the correlations between static electroweak observables are found to be independent of the particular shape of the momentum part of the nucleon light-front wave function. The neutron charge form factor is very sensitive to different choices of spin coupling schemes once the magnetic moment is fitted to the experimental value. However, it is found rather insensitive to the details of the momentum part of the three-quark wave function model.Comment: 23 pages, 13 figures, requires axodraw.sty 1 figure corrected, 1 refs. added, some changes in tex

    Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: spin-0 and spin-1 two-fermion systems

    Get PDF
    The connection between the Feynman triangle diagram and the light-front formalism for spin-0 and spin-1 two-fermion systems is analyzed. It is shown that in the limit q+ = 0 the form factors for both spin-0 and spin-1 systems can be uniquely determined using only the good amplitudes, which are not affected by spurious effects related to the loss of rotational covariance present in the light-front formalism. At the same time, the unique feature of the suppression of the pair creation process is maintained. Therefore, a physically meaningful one-body approximation, in which all the constituents are on their mass-shells, can be consistently formulated in the limit q+ = 0. Moreover, it is shown that the effects of the contact term arising from the instantaneous propagation of the active constituent can be canceled out from the triangle diagram by means of an appropriate choice of the off-shell behavior of the bound state vertexes; this implies that in case of good amplitudes the Feynman triangle diagram and the one-body light-front result match exactly. The application of our covariant light-front approach to the evaluation of the rho-meson elastic form factors is presented.Comment: corrected typos in the reference

    Three-quark clusters at finite temperatures and densities

    Get PDF
    We present a relativistic three-body equation to study correlations in a medium of finite temperatures and densities. This equation is derived within a systematic Dyson equation approach and includes the dominant medium effects due to Pauli blocking and self energy corrections. Relativity is implemented utilizing the light front form. The equation is solved for a zero-range force for parameters close to the confinement-deconfinement transition of QCD. We present correlations between two- and three-particle binding energies and calculate the three-body Mott transition.Comment: 7 pages, 7 figure

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section
    corecore