759 research outputs found

    Generalized parton distributions and double distributions for q q-bar pions

    Get PDF
    We consider two simple covariant models for pions (one with scalar and the other with spin-1/2 constituents). Pion generalized parton distributions are derived by integration over the light-cone energy. The model distributions are consistent with all known properties of generalized parton distributions, including positivity. We also construct the corresponding double distributions by appealing to Lorentz invariance. These ostensibly constructed double distributions lead to different generalized parton distributions that need not respect the positivity constraints. This inconsistency arises from the ambiguity inherent in defining double distributions in a one-component formalism (even in the absence of the Polyakov-Weiss term). We demonstrate that the correct model double distributions can be calculated from non-diagonal matrix elements of twist-two operators.Comment: 10 pages, 7 figures, RevTex4, reference added, typos correcte

    Electromagnetic form factors in the light-front formalism and the Feynman triangle diagram: spin-0 and spin-1 two-fermion systems

    Get PDF
    The connection between the Feynman triangle diagram and the light-front formalism for spin-0 and spin-1 two-fermion systems is analyzed. It is shown that in the limit q+ = 0 the form factors for both spin-0 and spin-1 systems can be uniquely determined using only the good amplitudes, which are not affected by spurious effects related to the loss of rotational covariance present in the light-front formalism. At the same time, the unique feature of the suppression of the pair creation process is maintained. Therefore, a physically meaningful one-body approximation, in which all the constituents are on their mass-shells, can be consistently formulated in the limit q+ = 0. Moreover, it is shown that the effects of the contact term arising from the instantaneous propagation of the active constituent can be canceled out from the triangle diagram by means of an appropriate choice of the off-shell behavior of the bound state vertexes; this implies that in case of good amplitudes the Feynman triangle diagram and the one-body light-front result match exactly. The application of our covariant light-front approach to the evaluation of the rho-meson elastic form factors is presented.Comment: corrected typos in the reference

    RQM description of the charge form factor of the pion and its asymptotic behavior

    Full text link
    The pion charge and scalar form factors, F1(Q2)F_1(Q^2) and F0(Q2)F_0(Q^2), are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon-exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As it could be expected, those point-form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q+=0q^+=0) do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD-power-law behavior Q2Q^{-2}. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F0(Q2)F_0(Q^2), is shown to have the right power-law behavior in any case. The low-Q2Q^2 behavior of the charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure

    Cryptoferromagnetic state in superconductor-ferromagnet multilayers

    Full text link
    We study a possibility of a non-homogeneous magnetic order (cryptoferromagnetic state) in heterostructures consisting of a bulk superconductor and a ferromagnetic thin layer that can be due to the influence of the superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time. A new approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic states and discuss the possibility of an experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur

    Exploring skewed parton distributions with two body models on the light front II: covariant Bethe-Salpeter approach

    Get PDF
    We explore skewed parton distributions for two-body, light-front wave functions. In order to access all kinematical regimes, we adopt a covariant Bethe-Salpeter approach, which makes use of the underlying equation of motion (here the Weinberg equation) and its Green's function. Such an approach allows for the consistent treatment of the non-wave function vertex (but rules out the case of phenomenological wave functions derived from ad hoc potentials). Our investigation centers around checking internal consistency by demonstrating time-reversal invariance and continuity between valence and non-valence regimes. We derive our expressions by assuming the effective qq potential is independent of the mass squared, and verify the sum rule in a non-relativistic approximation in which the potential is energy independent. We consider bare-coupling as well as interacting skewed parton distributions and develop approximations for the Green's function which preserve the general properties of these distributions. Lastly we apply our approach to time-like form factors and find similar expressions for the related generalized distribution amplitudes.Comment: 25 pages, 12 figures, revised (minor changes but essential to consistency

    Low energy collective modes, Ginzburg-Landau theory, and pseudogap behavior in superconductors with long-range pairing interactions

    Full text link
    We study the superconducting instability in systems with long but finite ranged, attractive, pairing interactions. We show that such long-ranged superconductors exhibit a new class of fluctuations in which the internal structure of the Cooper pair wave function is soft, and thus lead to "pseudogap" behavior in which the actual transition temperature is greatly depressed from its mean field value. These fluctuations are {\it not} phase fluctuations of the standard superconducting order parameter, and lead to a highly unusual Ginzburg-Landau description. We suggest that the crossover between the BCS limit of a short-ranged attraction and our problem is of interest in the context of superconductivity in the underdoped cuprates.Comment: 20 pages with one embedded ps figure. Minor revisions to the text and references. Final version to appear in PRB on Nov. 1st, 200

    Superconducting fluctuations and the Nernst effect: A diagrammatic approach

    Full text link
    We calculate the contribution of superconducting fluctuations above the critical temperature TcT_c to the transverse thermoelectric response αxy\alpha_{xy}, the quantity central to the analysis of the Nernst effect. The calculation is carried out within the microscopic picture of BCS, and to linear order in magnetic field. We find that as TTcT \to T_c, the dominant contribution to αxy\alpha_{xy} arises from the Aslamazov-Larkin diagrams, and is equal to the result previously obtained from a stochastic time-dependent Ginzburg-Landau equation [Ussishkin, Sondhi, and Huse, arXiv:cond-mat/0204484]. We present an argument which establishes this correspondence for the heat current. Other microscopic contributions, which generalize the Maki-Thompson and density of states terms for the conductivity, are less divergent as TTcT \to T_c.Comment: 11 pages, 5 figure

    Unconventional particle-hole mixing in the systems with strong superconducting fluctuations

    Full text link
    Development of the STM and ARPES spectroscopies enabled to reach the resolution level sufficient for detecting the particle-hole entanglement in superconducting materials. On a quantitative level one can characterize such entanglement in terms of the, so called, Bogoliubov angle which determines to what extent the particles and holes constitute the spatially or momentum resolved excitation spectra. In classical superconductors, where the phase transition is related to formation of the Cooper pairs almost simultaneously accompanied by onset of their long-range phase coherence, the Bogoliubov angle is slanted all the way up to the critical temperature Tc. In the high temperature superconductors and in superfluid ultracold fermion atoms near the Feshbach resonance the situation is different because of the preformed pairs which exist above Tc albeit loosing coherence due to the strong quantum fluctuations. We discuss a generic temperature dependence of the Bogoliubov angle in such pseudogap state indicating a novel, non-BCS behavior. For quantitative analysis we use a two-component model describing the pairs coexisting with single fermions and study their mutual feedback effects by the selfconsistent procedure originating from the renormalization group approach.Comment: 4 pages, 4 figure

    Oscillating Solitons Pinned to a Nonmagnetic Impurity in Layered Antiferromagnets

    Full text link
    We argue that an oscillatory motion of impurity-pinned solitons may occur in layered antiferromagnetic compounds. The characteristic frequencies of these modes, that may be detected by resonance or inelastic neutron scattering, are estimated analytically and depend on the soliton sizes and types .Comment: 11 pages, 1 figur
    corecore