6,637 research outputs found

    A Multiwavelength Study on the Fate of Ionizing Radiation in Local Starbursts

    Get PDF
    The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions of a sample of local star-forming galaxies, containing thirteen local starburst galaxies and ten of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs is much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24um, 70um, and 160um MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the GALEX bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small H-alpha fractions of the diffuse, warm ionized medium in starburst galaxies are apparently due to temporarily boosted H-alpha luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.Comment: 10 pages, 8 figures, accepted to ApJ 10/11/1

    Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model

    Full text link
    We propose an information-theoretic model for the transport of waves through a chaotic cavity in the presence of absorption. The entropy of the S-matrix statistical distribution is maximized, with the constraint =αn =\alpha n: n is the dimensionality of S, and 0≤α≤1,α=0(1)0\leq \alpha \leq 1, \alpha =0(1) meaning complete (no) absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential -Rayleigh statistics- even for n=1. For n≫1n\gg 1 Rayleigh statistics is attained even with no absorption; here we extend the study to α<1\alpha <1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in the latter regime, some important physical constraint is missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure

    Obtaining Au thin films in atmosphere of reactive nitrogen through magnetron sputtering

    Get PDF
    4d and 5d series of the transition metals are used to the obtaining nitrides metallic, due to the synthesis of PtN, AgN and AuN in the last years. Different nitrides are obtained in the Plasma Assisted Physics Vapour Deposition system, due to its ionization energy which is necessary for their formation. In this paper a Magnetron Sputtering system was used to obtain Au thin films on Si wafers in Nitrogen atmosphere. The substrate temperature was varied between 500 to 950°C. The samples obtained at high temperatures (>500°C) show Au, Si and N elements, as it is corroborated in the narrow spectrum obtained for X-Ray Photoelectron Spectroscopy; besides the competition of orientation crystallographic texture between (111) and (311) directions was present in the X-Ray Diffraction analysis to the sample heated at 950°C

    Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Spacetime

    Full text link
    In this paper we analyse the effect produced by the temperature in the vacuum polarization associated with charged massless scalar field in the presence of magnetic flux tube in the cosmic string spacetime. Three different configurations of magnetic fields are taken into account: (i)(i) a homogeneous field inside the tube, (ii)(ii) a field proportional to 1/r1/r and (iii)(iii) a cylindrical shell with δ\delta-function. In these three cases, the axis of the infinitely long tube of radius RR coincides with the cosmic string. Because the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above mentioned situations considering points in the region outside the tube. We explicitly calculate in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.Comment: 16 pages, 1 figur

    Vacuum Polarization for a Massless Spin-1/2 Field in the Global Monopole Spacetime at Nonzero Temperature

    Get PDF
    In this paper we present the effects produced by the temperature in the renormalized vacuum expectation value of the zero-zero component of the energy-momentum tensor associated with massless left-handed spinor field in the pointlike global monopole spacetime. In order to develop this calculation we had to obtain the Euclidean thermal Green function in this background. Because the expression obtained for the thermal energy density cannot be expressed in a closed form, its explicit dependence on the temperature is not completely evident. So, in order to obtain concrete information about its thermal behavior, we develop a numerical analysis of our result in the high-temperature limit for specific values of the parameter α\alpha which codify the presence of the monopole.Comment: 22 pages, LaTex format, 5 figure

    On the distribution of transmission eigenvalues in disordered wires

    Full text link
    We solve the Dorokhov-Mello-Pereyra-Kumar equation which describes the evolution of an ensamble of disordered wires of increasing length in the three cases β=1,2,4\beta=1,2,4. The solution is obtained by mapping the problem in that of a suitable Calogero-Sutherland model. In the β=2\beta=2 case our solution is in complete agreement with that recently found by Beenakker and Rejaei.Comment: 4 pages, Revtex, few comments added at the end of the pape

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length
    • …
    corecore