6,882 research outputs found

    Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities

    Full text link
    Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic cavities in the presence of absorption. Analytical results for the variance of the parametric derivative of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-right symmetric cavities. These results are valid for arbitrary number of channels, in completely agreement with the one channel case in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR

    Statistical wave scattering through classically chaotic cavities in the presence of surface absorption

    Full text link
    We propose a model to describe the statistical properties of wave scattering through a classically chaotic cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching an "absorbing patch" to the inner wall of the cavity. In our model, the cavity is connected to the outside by a waveguide with N open modes (or channels), while an experimental patch is simulated by an "absorbing mirror" attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scattering matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the lack of unitarity of Sa as a measure of absorption, are under our control: these parameters have an important physical significance for real experiments. The absorption strength in the cavity is quantified by the trace of the lack of unitarity. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing channel, Na =1, is solved analytically for the orthogonal and unitary universality classes, and the results are compared with those arising from numerical simulations. The relation with other models existing in the literature, in some of which absorption has a volumetric character, is also studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Diagonal approximation of the form factor of the unitary group

    Full text link
    The form factor of the unitary group U(N) endowed with the Haar measure characterizes the correlations within the spectrum of a typical unitary matrix. It can be decomposed into a sum over pairs of ``periodic orbits'', where by periodic orbit we understand any sequence of matrix indices. From here the diagonal approximation can be defined in the usual fashion as a sum only over pairs of identical orbits. We prove that as we take the dimension NN to infinity, the diagonal approximation becomes ``exact'', that is converges to the full form factor.Comment: 9 page

    Conductance peaks in open quantum dots

    Full text link
    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance, TT, as a function of an arbitrary external parameter ZZ, is directly related to the autocorrelation function of T(Z)T(Z). The parameter ZZ can be associated to an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc.. The average density of maxima is found to be =αZ/Zc = \alpha_{Z}/Z_c, where αZ\alpha_{Z} is a universal constant and ZcZ_c is the conductance autocorrelation length, which is system specific. The analysis of does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as ZcZ_c.Comment: 5 pages, 5 figures, accepted to be published - Physical Review Letter

    Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption

    Full text link
    We quantify the presence of direct processes in the S-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is studied in cavities with time-reversal symmetry for different antenna coupling strengths T_a or direct processes. The experimental results are compared with random-matrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases.Comment: 4 pages, 4 figure

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length

    A new analysis of the GJ581 extrasolar planetary system

    Full text link
    We have done a new analysis of the available observations for the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the ocurrence of aliases and the additional bodies - the planets f and g - announced in Vogt et al. 2010. Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the Habitable Zone (HZ) of the star GJ581. This region,for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period 450\approx 450 days, but we are judicious about any affirmation concernig this body because its signal is in the threshold of detection and the high period is in a spectral region where the ocorruence of aliases is very common. Besides, we outline some dynamical features of the habitable zone with the dynamical map and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure

    Fermionic current densities induced by magnetic flux in a conical space with a circular boundary

    Full text link
    We investigate the vacuum expectation value of the fermionic current induced by a magnetic flux in a (2+1)-dimensional conical spacetime in the presence of a circular boundary. On the boundary the fermionic field obeys MIT bag boundary condition. For irregular modes, a special case of boundary conditions at the cone apex is considered, when the MIT bag boundary condition is imposed at a finite radius, which is then taken to zero. We observe that the vacuum expectation values for both charge density and azimuthal current are periodic functions of the magnetic flux with the period equal to the flux quantum whereas the expectation value of the radial component vanishes. For both exterior and interior regions, the expectation values of the current are decomposed into boundary-free and boundary-induced parts. For a massless field the boundary-free part in the vacuum expectation value of the charge density vanishes, whereas the presence of the boundary induces nonzero charge density. Two integral representations are given for the boundary-free part in the case of a massive fermionic field for arbitrary values of the opening angle of the cone and magnetic flux. The behavior of the induced fermionic current is investigated in various asymptotic regions of the parameters. At distances from the boundary larger than the Compton wavelength of the fermion particle, the vacuum expectation values decay exponentially with the decay rate depending on the opening angle of the cone. We make a comparison with the results already known from the literature for some particular cases.Comment: 34 pages, 6 figure

    Exact Coupling Coefficient Distribution in the Doorway Mechanism

    Full text link
    In many--body and other systems, the physics situation often allows one to interpret certain, distinct states by means of a simple picture. In this interpretation, the distinct states are not eigenstates of the full Hamiltonian. Hence, there is an interaction which makes the distinct states act as doorways into background states which are modeled statistically. The crucial quantities are the overlaps between the eigenstates of the full Hamiltonian and the doorway states, that is, the coupling coefficients occuring in the expansion of true eigenstates in the simple model basis. Recently, the distribution of the maximum coupling coefficients was introduced as a new, highly sensitive statistical observable. In the particularly important regime of weak interactions, this distribution is very well approximated by the fidelity distribution, defined as the distribution of the overlap between the doorway states with interaction and without interaction. Using a random matrix model, we calculate the latter distribution exactly for regular and chaotic background states in the cases of preserved and fully broken time--reversal invariance. We also perform numerical simulations and find excellent agreement with our analytical results.Comment: 22 pages, 4 figure
    corecore