22 research outputs found

    Swimming dynamics of a micro-organism in a couple stress fluid : a rheological model of embryological hydrodynamic propulsion

    Get PDF
    Mathematical simulations of embryological fluid dynamics are fundamental to improving clinical understanding of the intricate mechanisms underlying sperm locomotion. The strongly rheological nature of reproductive fluids has been established for a number of decades. Complimentary to clinical studies, mathematical models of reproductive hydrodynamics provide a deeper understanding of the intricate mechanisms involved in spermatozoa locomotion which can be of immense benefit in clarifying fertilization processes. Although numerous non-Newtonian studies of spermatozoa swimming dynamics in non-Newtonian media have been communicated, very few have addressed the micro-structural characteristics of embryological media. This family of micro-continuum models include Eringen’s micro-stretch theory, Eringen’s microfluid and micropolar constructs and V.K. Stokes’ couple-stress fluid model, all developed in the 1960s. In the present paper we implement the last of these models to examine the problem of micro-organism (spermatozoa) swimming at low Reynolds number in a homogenous embryological fluid medium with couple stress effects. The micro-organism is modeled as with Taylor’s classical approach, as an infinite flexible sheet on whose surface waves of lateral displacement are propagated. The swimming speed of the sheet and rate of work done by it are determined as function of the parameters of orbit and the couple stress fluid parameter (α). The perturbation solutions are validated with a Nakamura finite difference algorithm. The perturbation solutions reveal that the normal beat pattern is effective for both couple stress and Newtonian fluids only when the amplitude of stretching wave is small. The swimming speed is observed to decrease with couple stress fluid parameter tending to its Newtonian limit as alpha tends to infinity. However the rate of work done by the sheet decreases with α and approaches asymptotically to its Newtonian value. The present solutions also provide a good benchmark for more advanced numerical simulations of micro-organism swimming in couple-stress rheological biofluids

    Arrhenius-kinetics evidence for quantum tunneling in microbial “social” decision rates

    No full text
    Social-like bacteria, fungi and protozoa communicate chemical and behavioral signals to coordinate their specializations into an ordered group of individuals capable of fitter ecological performance. Examples of microbial “social” behaviors include sporulation and dispersion, kin recognition and nonclonal or paired reproduction. Paired reproduction by ciliates is believed to involve intra- and intermate selection through pheromone-stimulated “courting” rituals. Such social maneuvering minimizes survival-reproduction tradeoffs while sorting superior mates from inferior ones, lowering the vertical spread of deleterious genes in geographically constricted populations and possibly promoting advantageous genetic innovations. In a previous article, I reported findings that the heterotrich Spirostomum ambiguum can out-complete mating rivals in simulated social trials by learning behavioral heuristics which it then employs to store and select sets of altruistic and deceptive signaling strategies. Frequencies of strategy use typically follow Maxwell-Boltzmann (MB), Fermi-Dirac (FD) or Bose-Einstein (BE) statistical distributions. For ciliates most adept at social decision making, a brief classical MB computational phase drives signaling behavior into a later quantum BE computational phase that condenses or favors the selection of a single fittest strategy. Appearance of the network analogue of BE condensation coincides with Hebbian-like trial-and-error learning and is consistent with the idea that cells behave as heat engines, where loss of energy associated with specific cellular machinery critical for mating decisions effectively reduces the temperature of intracellular enzymes cohering into weak Fröhlich superposition. I extend these findings by showing the rates at which ciliates switch serial behavioral strategies agree with principles of chemical reactions exhibiting linear and nonlinear Arrhenius kinetics during respective classical and quantum computations. Nonlinear Arrhenius kinetics in ciliate decision making suggest transitions from one signaling strategy to another result from a computational analogue of quantum tunneling in social information processing
    corecore