1,237 research outputs found
-point amplitudes for d=2 c=1 Discrete States from String Field Theory
Starting from string field theory for 2d gravity coupled to c=1 matter we
analyze N-point off-shell tree amplitudes of discrete states. The amplitudes
exhibit the pole structure and we use the oscillator representation to extract
the residues. The residues are generated by a simple effective action. We show
that the effective action can be directly deduced from a string field action in
a special transversal-like gauge.Comment: 12 pages, latex, 1 figur
An upper limit on nickel overabundance in the supercritical accretion disk wind of SS 433 from X-ray spectroscopy
We take advantage of a long (with a total exposure time of 120 ks) X-ray
observation of the unique Galactic microquasar SS 433, carried out with the
XMM-Newton space observatory, to search for a fluorescent line of neutral (or
weakly ionized) nickel at the energy 7.5 keV. We consider two models of the
formation of fluorescent lines in the spectrum of SS 433: 1) due to reflection
of hard X-ray radiation from a putative central source on the optically thick
walls of the accretion disk "funnel"; and 2) due to scattering of the radiation
coming from the hottest parts of the jets in the optically thin wind of the
system. It is shown, that for these cases, the photon flux of Ni I K
fluorescent line is expected to be 0.45 of the flux of Fe I K
fluorescent line at 6.4 keV, for the relative nickel overabundance , as observed in the jets of SS 433. For the continuum model without the
absorption edge of neutral iron, we set a 90 per cent upper limit on the flux
of the narrow Ni I K line at the level of ph
s cm. For the continuum model with the absorption edge, the
corresponding upper limit is ph s cm. At the
same time, for the Fe I K line, we measure the flux of
ph s cm. Taken at the face
value, the results imply that the relative overabundance of nickel in the wind
of the accretion disc should be at least 1.5 times less than the corresponding
excess of nickel observed in the jets of SS 433.Comment: 17 pages, 12 figures, 4 tables, Astronomy Letters, in press, 2018,
Volume 44, Issue
Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions
The influence of various kinetic effects (e.g. Landau damping, diffusive and
collisional dissipation, and finite Larmor radius terms) on the nonlinear
evolution of finite amplitude Alfvenic wave trains in a finite-beta environment
is systematically investigated using a novel, kinetic nonlinear Schrodinger
(KNLS) equation. The dynamics of Alfven waves is sensitive to the sense of
polarization as well as the angle of propagation with respect to the ambient
magnetic field. Numerical solution for the case with Landau damping reveals the
formation of dissipative structures, which are quasi-stationary, S-polarized
directional (and rotational) discontinuities which self-organize from parallel
propagating, linearly polarized waves. Parallel propagating circularly
polarized packets evolve to a few circularly polarized Alfven harmonics on
large scales. Stationary arc-polarized rotational discontinuities form from
obliquely propagating waves. Collisional dissipation, even if weak, introduces
enhanced wave damping when beta is very close to unity. Cyclotron motion
effects on resonant particle interactions introduce cyclotron resonance into
the nonlinear Alfven wave dynamics.Comment: 38 pages (including 23 figures and 1 table
Chaos-Order Transition in Matrix Theory
Classical dynamics in SU(2) Matrix theory is investigated. A classical
chaos-order transition is found. For the angular momentum small enough (even
for small coupling constant) the system exhibits a chaotic behavior, for
angular momentum large enough the system is regular.Comment: 14 pages, Latex, 10 figure
Noncommutative Field Theories and (Super)String Field Theories
In this lecture notes we explain and discuss some ideas concerning
noncommutative geometry in general, as well as noncommutative field theories
and string field theories. We consider noncommutative quantum field theories
emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's
conjectures on open string tachyon condensation and their application to the
D-brane physics have led to wide investigations of the covariant string field
theory proposed by Witten about 15 years ago. We review main ingredients of
cubic (super)string field theories using various formulations: functional,
operator, conformal and the half string formalisms. The main technical tools
that are used to study conjectured D-brane decay into closed string vacuum
through the tachyon condensation are presented. We describe also methods which
are used to study the cubic open string field theory around the tachyon vacuum:
construction of the sliver state, ``comma'' and matrix representations of
vertices.Comment: 160 pages, LaTeX, 29 EPS figures. Lectures given by I.Ya.Aref'eva at
the Swieca Summer School, Brazil, January 2001; Summer School in Modern
Mathematical Physics, Sokobanja, Yugoslavia, August 2001; Max Born Symposium,
Karpacz, Poland, September, 2001; Workshop "Noncommutative Geometry, Strings
and Renormalization", Leipzig, Germany, September 2001. Typos corrected,
references adde
Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids
Nanoparticles of iron oxides (MNPs) were prepared using the electric explosion of wire technique (EEW). The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetite suspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level) based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight). Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid. Copyright © 2012 Author(s)
- …