452 research outputs found

    On the Existence of the Logarithmic Correction Term in Black Hole Entropy-Area Relation

    Get PDF
    In this paper we consider a model universe with large extra dimensions to obtain a modified black hole entropy-area relation. We use the generalized uncertainty principle to find a relation between the number of spacetime dimensions and the presence or vanishing of logarithmic prefactor in the black hole entropy-area relation. Our calculations are restricted to the microcanonical ensembles and we show that in the modified entropy-area relation, the microcanonical logarithmic prefactor appears only when spacetime has an even number of dimensions.Comment: 9 Pages, No Figure

    Entropy Corrections for Schwarzschild and Reissner-Nordstr\"om Black Holes

    Full text link
    Schwarzschild black hole being thermodynamically unstable, corrections to its entropy due to small thermal fluctuations cannot be computed. However, a thermodynamically stable Schwarzschild solution can be obtained within a cavity of any finite radius by immersing it in an isothermal bath. For these boundary conditions, classically there are either two black hole solutions or no solution. In the former case, the larger mass solution has a positive specific heat and hence is locally thermodynamically stable. We find that the entropy of this black hole, including first order fluctuation corrections is given by: {\cal S} = S_{BH} - \ln[\f{3}{R} (S_{BH}/4\p)^{1/2} -2]^{-1} + (1/2) \ln(4\p), where SBH=A/4S_{BH}=A/4 is its Bekenstein-Hawking entropy and RR is the radius of the cavity. We extend our results to four dimensional Reissner-Nordstr\"om black holes, for which the corresponding expression is: {\cal S} = S_{BH} - \f{1}{2} \ln [ {(S_{BH}/\p R^2) ({3S_{BH}}/{\p R^2} - 2\sqrt{{S_{BH}}/{\p R^2 -\a^2}}) \le(\sqrt{{S_{BH}}/{\p R^2}} - \a^2 \ri)}/ {\le({S_{BH}}/{\p R^2} -\a^2 \ri)^2} ]^{-1} +(1/2)\ln(4\p). Finally, we generalise the stability analysis to Reissner-Nordstr\"om black holes in arbitrary spacetime dimensions, and compute their leading order entropy corrections. In contrast to previously studied examples, we find that the entropy corrections in these cases have a different character.Comment: 6 pages, Revtex. References added, minor changes. Version to appear in Class. Quant. Gra

    Living with Parkinson's disease—managing identity together

    Get PDF
    The specific aim of this paper is to discuss how individuals living with Parkinson's disease and their main family supports perceive communications with each other, with a focus on their roles related to care. The paper is based on individual interviews conducted with individuals and their main family support person. The transcripts were analyzed based on grounded theory and “managing identity together” emerged as the core category. This is discussed in terms of independence, a sense of self-sufficiency and an overall sense of personhood. Implications for other populations conclude the paper

    Thermal Fluctuations and Black Hole Entropy

    Full text link
    In this paper, we consider the effect of thermal fluctuations on the entropy of both neutral and charged black holes. We emphasize the distinction between fixed and fluctuating charge systems; using a canonical ensemble to describe the former and a grand canonical ensemble to study the latter. Our novel approach is based on the philosophy that the black hole quantum spectrum is an essential component in any such calculation. For definiteness, we employ a uniformly spaced area spectrum, which has been advocated by Bekenstein and others in the literature. The generic results are applied to some specific models; in particular, various limiting cases of an (arbitrary-dimensional) AdS-Reissner-Nordstrom black hole. We find that the leading-order quantum correction to the entropy can consistently be expressed as the logarithm of the classical quantity. For a small AdS curvature parameter and zero net charge, it is shown that, independent of the dimension, the logarithmic prefactor is +1/2 when the charge is fixed but +1 when the charge is fluctuating.We also demonstrate that, in the grand canonical framework, the fluctuations in the charge are large, ΔQ∌ΔA∌SBH1/2\Delta Q\sim\Delta A\sim S_{BH}^{1/2}, even when =0 =0. A further implication of this framework is that an asymptotically flat, non-extremal black hole can never achieve a state of thermal equilibrium.Comment: 25 pages, Revtex; references added and corrected, and some minor change

    Anti-de Sitter black holes, perfect fluids, and holography

    Full text link
    We consider asymptotically anti-de Sitter black holes in dd-spacetime dimensions in the thermodynamically stable regime. We show that the Bekenstein-Hawking entropy and its leading order corrections due to thermal fluctuations can be reproduced by a weakly interacting fluid of bosons and fermions (`dual gas') in Δ=α(d−2)+1\Delta=\alpha(d-2)+1 spacetime dimensions, where the energy-momentum dispersion relation for the constituents of the fluid is assumed to be Ï”=Îșpα\epsilon = \kappa p^\alpha. We examine implications of this result for entropy bounds and the holographic hypothesis.Comment: Minor changes to match published version. 9 Pages, Revte

    Anatomy of a Bounce

    Full text link
    Holographic considerations are used in the scrutiny of a special class of brane-world cosmologies. Inherently to this class, the brane typically bounces, at a finite size, as a consequence of a charged black hole in the bulk. Whereas a prior treatment [hep-th/0301010] emphasized a brane that is void of standard-model matter, the analysis is now extended to include an intrinsic (radiation-dominated) matter source. An interesting feature of this generalized model is that a bounce is no longer guaranteed but, rather, depends on the initial conditions. Ultimately, we demonstrate that compliance with an appropriate holographic bound is a sufficient prerequisite for a bounce to occur.Comment: 14 pages, Revtex; (v2) minor revisions; (v3) reference adde

    Problems with Tunneling of Thin Shells from Black Holes

    Full text link
    It is shown that exp(−2Im(∫pdr))exp(-2 Im(\int p dr)) is not invariant under canonical transformations in general. Specifically for shells tunneling out of black holes, this quantity is not invariant under canonical transformations. It can be interpreted as the transmission coefficient only in the cases in which it is invariant under canonical transformations. Although such cases include alpha decay, they do not include the tunneling of shells from black holes. The simplest extension to this formula which is invariant under canonical transformations is proposed. However it is shown that this gives half the correct temperature for black holes.Comment: 25 pages, 3 figures; v4: Made changes for publicatio

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    IDES-EDU: Comprehensive multidisciplinary education programme to accelerate the implementation of EPBD in Europe

    Get PDF
    This paper presents a new education and training programme on integrated energy design developed by fifteen European universities collaborating within the IDES-EDU project (2010-2013), funded by Intelligent Energy Europe. IDES-EDU aims to accelerate the implementation of the Energy Performance of Buildings Directive (EPBD) by proposing Master and Post Graduate education and training in multidisciplinary teams. To speed up transition from traditional, sub-optimised building projects with discipline-oriented, segregated budgets and operations, IDES-EDU developed comprehensive, multidisciplinary educational programmes targetting integrated project design at the interface of architecture and engineering. Taking into account local variations in climate, construction and pedagogical approaches, the programme facilitates gradual implementation towards full integration of energy efficiency in building education according to local capacity and legislation. This paper summarises the evaluation process of the first implementation of the educational material in the 15 universities, by academic staff, national industry and professional organisations, and reference students from each university. Included are expected learning outcomes, level of integration in existing curricula and alignment with theory and assessment methods. Measures for improvement as well as further dissemination to other European educational facilities are proposed. In this manner, the project will contribute to make the multiple opportunities for energy efficiency a reality.Intelligent Energy Europe programme for its financial support, Grant agreement no.IEE/09/631/SI2.55822

    Quantum Gravity and Recovery of Information in Black Hole Evaporation

    Full text link
    The Generalized Uncertainty Principle (GUP), motivated by current alternatives of quantum gravity, produces significant modifications to the Hawking radiation and the final stage of black hole evaporation. We show that incorporation of the GUP into the quantum tunneling process (based on the null-geodesic method) causes correlations between the tunneling probability of different modes in the black hole radiation spectrum. In this manner, the quantum information becomes encrypted in the Hawking radiation, and information can be recovered as non-thermal GUP correlations between tunneling probabilities of different modes.Comment: 7 pages, no figure, final revisio
    • 

    corecore