1,747 research outputs found
The design-by-adaptation approach to universal access: learning from videogame technology
This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation
Post coital aortic dissection: a case report
<p>Abstract</p> <p>Background</p> <p>Sudden onset peri- or post-coital cardiovascular disease is well documented in the literature including myocardial infarction, pulmonary embolus and subarachnoid haemorrhage. The occurrence of aortic dissection in this setting has been reported only once previously.</p> <p>Case presentation</p> <p>We report the case of a 47 year old man who developed sudden onset right leg pain during coitus. This was initially believed to be neurological due to nerve impingement but an MRI failed to identify a prolapse. On further review after 6 weeks, pulses were noted to be absent in the patient's right leg and an urgent vascular review with investigation identified a dissection of the aorta which was subsequently successfully treated.</p> <p>Conclusion</p> <p>This case illustrates a rare presentation of aortic dissection and demonstrates the importance of a thorough vascular assessment in the presence of sudden onset limb pain.</p
Unbiased yeast screens identify cellular pathways affected in Niemann-Pick disease type C
Niemann–Pick disease type C (NPC) is a rare lysosomal storage
disease caused by mutations in either the NPC1 or NPC2 genes.
Mutations in the NPC1 gene lead to the majority of clinical cases
(95%); however, the function of NPC1 remains unknown. To gain
further insights into the biology of NPC1, we took advantage of
the homology between the human NPC1 protein and its yeast
orthologue, Niemann–Pick C–related protein 1 (Ncr1). We recreated the NCR1 mutant in yeast and performed screens to identify
compensatory or redundant pathways that may be involved in
NPC pathology, as well as proteins that were mislocalized in
NCR1-deficient yeast. We also identified binding partners of the
yeast Ncr1 orthologue. These screens identified several processes
and pathways that may contribute to NPC pathogenesis. These
included alterations in mitochondrial function, cytoskeleton
organization, metal ion homeostasis, lipid trafficking, calcium
signalling, and nutrient sensing. The mitochondrial and cytoskeletal abnormalities were validated in patient cells carrying
mutations in NPC1, confirming their dysfunction in NPC disease
Observation of He-like satellite lines of the H-like potassium K XIX emission
We present measurements of the H-like potassium (K XIX) X-ray spectrum and its Helike (K XVIII) satellite lines, which are situated in the wavelength region between 3.34 and 3.39 Å, which has been of interest for the detection of dark matter. The measurements were taken with a high-resolution X-ray spectrometer from targets irradiated by a long-pulse (2 ns) beam from the Orion laser facility. We obtain experimental wavelength values of dielectronic recombination satellite lines and show that the ratio of the Lyα lines and their dielectronic satellite lines can be used to estimate the electron temperature, which in our case was about 1.5±0.3 keV
Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye.
Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 μm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (- 24%) and central region (- 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (- 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis
Beautiful Mirrors at the LHC
We explore the "Beautiful Mirrors" model, which aims to explain the measured
value of , discrepant at the level. This scenario
introduces vector-like quarks which mix with the bottom, subtly affecting its
coupling to the . The spectrum of the new particles consists of two
bottom-like quarks and a charge -4/3 quark, all of which have electroweak
interactions with the third generation. We explore the phenomenology and
discovery reach for these new particles at the LHC, exploring single mirror
quark production modes whose rates are proportional to the same mixing
parameters which resolve the anomaly. We find that for mirror quark
masses is required to
reasonably establish the scenario and extract the relevant mixing parameters.Comment: version to be published in JHE
Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems
A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand
Projections of the current and future disease burden of hepatitis C virus infection in Malaysia
The prevalence of hepatitis C virus (HCV) infection in Malaysia has been estimated at 2.5% of the adult population. Our objective, satisfying one of the directives of the WHO Framework for Global Action on Viral Hepatitis, was to forecast the HCV disease burden in Malaysia using modelling methods.An age-structured multi-state Markov model was developed to simulate the natural history of HCV infection. We tested three historical incidence scenarios that would give rise to the estimated prevalence in 2009, and calculated the incidence of cirrhosis, end-stage liver disease, and death, and disability-adjusted life-years (DALYs) under each scenario, to the year 2039. In the baseline scenario, current antiviral treatment levels were extended from 2014 to the end of the simulation period. To estimate the disease burden averted under current sustained virological response rates and treatment levels, the baseline scenario was compared to a counterfactual scenario in which no past or future treatment is assumed.In the baseline scenario, the projected disease burden for the year 2039 is 94,900 DALYs/year (95% credible interval (CrI): 77,100 to 124,500), with 2,002 (95% CrI: 1340 to 3040) and 540 (95% CrI: 251 to 1,030) individuals predicted to develop decompensated cirrhosis and hepatocellular carcinoma, respectively, in that year. Although current treatment practice is estimated to avert a cumulative total of 2,200 deaths from DC or HCC, a cumulative total of 63,900 HCV-related deaths is projected by 2039.The HCV-related disease burden is already high and is forecast to rise steeply over the coming decades under current levels of antiviral treatment. Increased governmental resources to improve HCV screening and treatment rates and to reduce transmission are essential to address the high projected HCV disease burden in Malaysia
Recommended from our members
A common framework for approaches to extreme event attribution
The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change
is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing
to the event as it unfolded, including the anomalous
aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved
Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC
The Cryogenic Dark Matter Search recently announced the observation of two
signal events with a 77% confidence level. Although statistically inconclusive,
it is nevertheless suggestive. In this work we present a model-independent
analysis on the implication of a positive signal in dark matter scattering off
nuclei. Assuming the interaction between (scalar, fermion or vector) dark
matter and the standard model induced by unknown new physics at the scale
, we examine various dimension-6 tree-level induced operators and
constrain them using the current experimental data, e.g. the WMAP data of the
relic abundance, CDMS II direct detection of the spin-independent scattering,
and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC
reach is also explored
- …