6 research outputs found

    Co-directional replication-transcription conflicts lead to replication restart

    Get PDF
    August 24, 2011Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability1, 2. To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed ribosomal RNA genes co-directional with replication3. In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10–20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign2, 4, 5, 6, 7, 8, 9. Biochemical analyses indicate that head-on encounters10 are more deleterious than co-directional encounters8 and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication, leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts probably occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.Biotechnology and Biological Sciences Research Council (Great Britain) (Grant BB/E006450/1)Wellcome Trust (London, England) (Grant 091968/Z/10/Z)National Institutes of Health (U.S.) (Grant GM41934)National Institutes of Health (U.S.) (Postdoctoral Fellowship GM093408)Biotechnology and Biological Sciences Research Council (Great Britain) (Sabbatical Visit

    Intragenic and Extragenic Suppressors of Temperature Sensitive Mutations in the Replication Initiation Genes dnaD and dnaB of Bacillus subtilis

    Get PDF
    Background The Bacillus subtilis genes dnaD and dnaB are essential for the initiation of DNA replication and are required for loading of the replicative helicase at the chromosomal origin of replication oriC. Wild type DnaD and DnaB interact weakly in vitro and this interaction has not been detected in vivo or in yeast two-hybrid assays. Methodology/Principal Findings We isolated second site suppressors of the temperature sensitive phenotypes caused by one dnaD mutation and two different dnaB mutations. Five different intragenic suppressors of the dnaD23ts mutation were identified. One intragenic suppressor was a deletion of two amino acids in DnaD. This deletion caused increased and detectable interaction between the mutant DnaD and wild type DnaB in a yeast two-hybrid assay, similar to the increased interaction caused by a missense mutation in dnaB that is an extragenic suppressor of dnaD23ts. We isolated both intragenic and extragenic suppressors of the two dnaBts alleles. Some of the extragenic suppressors were informational suppressors (missense suppressors) in tRNA genes. These suppressor mutations caused a change in the anticodon of an alanine tRNA so that it would recognize the mutant codon (threonine) in dnaB and likely insert the wild type amino acid (alanine). Conclusions/Significance The intragenic suppressors should provide insights into structure-function relationships in DnaD and DnaB, and interactions between DnaD and DnaB. The extragenic suppressors in the tRNA genes have important implications regarding the amount of wild type DnaB needed in the cell. Since missense suppressors are typically inefficient, these findings indicate that production of a small amount of wild type DnaB, in combination with the mutant protein, is sufficient to restore some DnaB function
    corecore