2 research outputs found

    Nanofriction in Cold Ion Traps

    Get PDF
    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices, or clusters, depending on trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, via e.g. an electric field, the trapped ion chains over a periodic corrugated potential. Unlike infinite chains where, according to theory, the classic Aubry transition to free sliding may take place, trapped chains are always pinned. Nonetheless we find that a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, ubiquitous for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction can also be addressed by ringdown oscillations of the ion trap. Long theorized static and dynamic one dimensional friction phenomena could thus become exquisitely accessible in future cold ion tribology
    corecore