10 research outputs found

    Lamprey spawning migration

    No full text
    During recent decades, new insights regarding the spawning migration of lampreys have been gained due to advances in technology and growing interest in this key life history phase. The development of miniaturized active and passive transmitters has led to detailed information on the timing and extent of lamprey migrations. These tools, together with sophisticated laboratory experiments, have provided fertile ground for studies of lamprey migratory physiology and behavior. New molecular tools have been applied to questions of population structure and philopatry, while the identification of lamprey pheromones has illuminated heretofore unimagined mechanisms of migration and orientation. Interest in spawning migration has been spurred by the growing need to restore native lamprey populations and the equally pressing need to control invasive sea lamprey in the Laurentian Great Lakes. While important advances in anadromous lamprey biology have been achieved, gaps remain in our understanding of marine movements, species-specific differences, mechanisms of orientation, and the factors controlling passage success. Moreover, with the exception of the landlocked sea lamprey in the Great Lakes, research on the spawning migrations of the strictly potamodromous species (i.e., those that are parasitic in fresh water and the non-parasitic “brook” lampreys) is sorely lacking, seriously compromising our ability to assess what constitutes barriers to their migration

    Elastin in vascular grafts

    No full text
    The clinical demand for a superior vascular graft is rising due to the increase in cardiovascular disease with an aging population. Despite decades of research, clinically translatable solutions remain limited. Recent progress in vascular graft engineering has highlighted the significance of biological integration for the success of implanted grafts. Thus there has been an increase in the usage of biological materials in vascular graft manufacture. Elastin, a natural protein that makes up a significant portion of the natural vascular extracellular matrix, has been demonstrated to be particularly important with both mechanical and biological modulatory roles. Progress in understanding elastogenesis, the process by which elastin is naturally synthesized, and increased access to synthetic elastin-based materials, has increased the usage of elastin in vascular graft engineering. In this chapter, we explore recent advances in the utilization of elastin as a material for vascular graft engineering. In particular, we focus on the myriad of methods which incorporate elastin into vascular grafts which demonstrate superior biological functionality and closer resemblance to native blood vessels

    Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity

    No full text

    Advances in biomimetic regeneration of elastic matrix structures

    No full text
    corecore