319 research outputs found

    Partially Composite Higgs in Supersymmetry

    Full text link
    We propose a framework for natural breaking of electroweak symmetry in supersymmetric models, where elementary Higgs fields are semi-perturbatively coupled to a strong superconformal sector. The Higgs VEVs break conformal symmetry in the strong sector at the TeV scale, and the strong sector in turn gives important contributions to the Higgs potential, giving rise to a kind of Higgs bootstrap. A Higgs with mass 125\GeV can be accommodated without any fine tuning. A Higgsino mass of order the Higgs mass is also dynamically generated in these models. The masses in the strong sector generically violate custodial symmetry, and a good precision electroweak fit requires tuning of order 10\sim 10%. The strong sector has an approximately supersymmetric spectrum of hadrons at the TeV scale that can be observed by looking for a peak in the WZWZ invariant mass distribution, as well as final states containing multiple WW, ZZ, and Higgs bosons. The models also generically predict large corrections (either enhancement or suppression) to the h \to \ga\ga width.Comment: 31 page

    Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex

    Get PDF
    The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex

    Generation of a Cell Culture-Adapted Hepatitis C Virus with Longer Half Life at Physiological Temperature

    Get PDF
    BACKGROUND: We previously reported infectious HCV clones that contain the convenient reporters, green fluorescent protein (GFP) and Renilla luciferase (Rluc), in the NS5a-coding sequence. Although these viruses were useful in monitoring viral proliferation and screening of anti-HCV drugs, the infectivity and yield of the viruses were low. METHODOLOGY/PRINCIPAL FINDINGS: In order to obtain a highly efficient HCV cultivation system, we transfected Huh7.5.1 cells [1] with JFH 5a-GFP RNA and then cultivated cells for 20 days. We found a highly infectious HCV clone containing two cell culture-adapted mutations. Two cell culture-adapted mutations which were responsible for the increased viral infectivity were located in E2 and p7 protein coding regions. The viral titer of the variant was ∼100-fold higher than that of the parental virus. The mutation in the E2 protein increased the viability of virus at 37°C by acquiring prolonged interaction capability with a HCV receptor CD81. The wild-type and p7-mutated virus had a half-life of ∼2.5 to 3 hours at 37°C. In contrast, the half-life of viruses, which contained E2 mutation singly and combination with the p7 mutation, was 5 to 6 hours at 37°C. The mutation in the p7 protein, either singly or in combination with the E2 mutation, enhanced infectious virus production about 10-50-fold by facilitating an early step of virion production. CONCLUSION/SIGNIFICANCE: The mutation in the E2 protein generated by the culture system increases virion viability at 37°C. The adaptive mutation in the p7 protein facilitates an earlier stage of virus production, such as virus assembly and/or morphogenesis. These reporter-containing HCV viruses harboring adaptive mutations are useful in investigations of the viral life cycle and for developing anti-viral agents against HCV

    Identification of Essential Sequences for Cellular Localization in BRMS1 Metastasis Suppressor

    Get PDF
    10 páginas, 5 figuras. PMID: 19649328 [PubMed] PMCID: PMC2713406BACKGROUND: Breast cancer metastasis suppressor 1 (BRMS1) reduces the number and the size of secondary tumours in a mouse model without affecting the growth of the primary foci upon its re-expression. Knockdown of BRMS1 expression associates with metastasis. The molecular details on BRMS1 mechanism of action include its ability to function as a transcriptional co-repressor and consistently BRMS1 has been described as a predominantly nuclear protein. Since cellular distribution could represent a potential mechanism of regulation, we wanted to characterize BRMS1 sequence motifs that might regulate its cellular distribution. According to its amino acids sequence, BRMS1 contain two putative nuclear localization signals, however none of them has been proved to work so far. METHODOLOGY/PRINCIPAL FINDINGS: By using well known in vivo assays to detect both nuclear import and export signal, we have characterized, in the present study, one functional nuclear localisation signal as necessary and sufficient to promote nuclear transport. Additionally, the outcome of a directed yeast two-hybrid assay identify importin alpha6 as a specific partner of BRMS1 thus speculating that BRMS1 nuclear import could be specifically mediated by the reported nuclear transporter. Besides, the combination of a computational searching approach along the utilization of a nuclear export assay, identified a functional motif within the BRMS1 sequence responsible for its nuclear export, that resulted not affected by the highly specific CRM1 inhibitor Leptomycin-B. Interspecies heterokaryon assay demonstrate the capability of BRMS1 to shuttle between the nuclear and cytosolic compartments CONCLUSIONS/SIGNIFICANCE: Our results show for the first time that BRMS1 contains both nuclear import and export signals enabling its nucleo-cytoplasmic shuttling. These findings contributes new data for the understanding of the BRMS1 functions and allow us to speculate that this phenomenon could represent a novel mechanism for regulating the activity of BRMS1 or its associated cytosolic partnersThis work was supported by Spanish Ministerio de Ciencia y Tecnología (Grant SAF2006-10269), Ministerio de Ciencia e Innovación (Grant SAF2008-04048-E) and by a grant from Fundación Mutua Madrileña.Peer reviewe

    Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    Get PDF
    Objective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tumor lesion before and during therapy. Results: At baseline, mean BF and MRgluvaried among different tumor lesions, but mean Vdwas comparable in all lesions. After one course of chemotherapy, mean MRgludecreased in all lesions. Mean BF decreased in breast and node lesions and increased in bone lesions. Vddecreased in breast and nodes, but did not change in bone lesions. The MRglu/BF ratio decreased in breast and bone lesions and increased in node lesions. In patients with multiple tumor lesions BF and MRgluresponse could be very heterogeneous, even within similar types of metastases. BF and MRgluincreased in lesions of patients who experienced early disease progression or showed no response during clinical follow-up. Conclusion: BF and MRgluchanges separately give unique information on different aspects of tumor response to chemotherapy. Changes in BF and MRgluparameters can be remarkably heterogeneous in patients with multiple lesions

    A Membrane-Bound Vertebrate Globin

    Get PDF
    The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein

    Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases

    Get PDF
    We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment

    Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Get PDF
    BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis

    Analysis of the piggyBac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>piggyBac</it> transposable element is a popular tool for germ-line transgenesis of eukaryotes. Despite this, little is known about the mechanism of transposition or the transposase (TPase) itself. A thorough understanding of just how <it>piggyBac</it> works may lead to more effective use of this important mobile element. A PSORTII analysis of the TPase amino acid sequence predicts a bipartite nuclear localization signal (NLS) near the c-terminus, just upstream of a putative ZnF (ZnF).</p> <p>Results</p> <p>We fused the <it>piggyBac</it> TPase upstream of and in-frame with the enhanced yellow fluorescent protein (EYFP) in the <it>Drosophila melanogaster</it> inducible metallothionein protein. Using Drosophila Schneider 2 (S2) cells and the deep red fluorescent nuclear stain Draq5, we were able to track the pattern of <it>piggyBac</it> localization with a scanning confocal microscope 48 hours after induction with copper sulphate.</p> <p>Conclusion</p> <p>Through n and c-terminal truncations, targeted internal deletions, and specific amino acid mutations of the <it>piggyBac</it> TPase open reading frame, we found that not only is the PSORTII-predicted NLS required for the TPase to enter the nucleus of S2 cells, but there are additional requirements for negatively charged amino acids a short length upstream of this region for nuclear localization.</p
    corecore