36 research outputs found

    Hometronics – accessible production of graphene suspensions for health sensing applications using only household items

    Get PDF
    Nanoscience at times can seem out of reach to the developing world and the general public, with much of the equipment expensive and knowledge seemingly esoteric to nonexperts. Using only cheap, everyday household items, accessible research with real applications can be shown. Here, graphene suspensions were produced using pencil lead, tap water, kitchen appliances, soaps and coffee filters, with a children’s glue-based graphene nanocomposite for highly sensitive pulse measurements demonstrated

    Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies

    Full text link
    Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem

    Balancing connectivity with function in silver(i) networks of pyridyltriazole (tzpa) ligands results in the formation of a metallogel

    Get PDF
    A new flexible and divergent 1,2,3-triazol-4-yl-picolinamide (tzpa) ligand 2 and the half-equivalent model ligand 1, both functionalised with pendant 3-pyridyl groups, are reported and their coordination behaviour with silver(i) ions is explored, both in the crystalline phase and through the formation of a supramolecular metallogel. The self-assembly of tzpa ligand 1 with AgCF3SO3 resulted in the formation of a 1D coordination polymer, binding in a bidentate fashion through the pyridyl and triazole nitrogen atoms of the tzpa binding site and a pendant pyridyl nitrogen atom of an adjacent ligand. Doubling the number of metal binding sites in ligand 2, while retaining the same metal binding domain, gives rise to the formation of a supramolecular metallogel on reaction with AgBF4 at 5 wt% in MeCN, possessing self-healing properties

    Granular Flow Under Microgravity: A Preliminary Review

    No full text
    The complex macroscopic rheological behavior of granular flow contains elements of both solid and liquid flow. Furthermore, under microgravity, granular flow exhibits novel flow features. To overcome a lack of comprehensive analyses of granular flow under microgravity, this study reviews the microgravity platforms and devices under which granular flow can be observed, the experimental findings made in such settings, and the range of numerical simulations that can be used to examine granular flow under microgravity. Differences in experimental research between normal gravity and microgravity are highlighted. These differences are found in the modifications made to conventional granular flow experimental devices, in new or unique granular flow behaviors, and in the numerical simulation methods needed for microgravity modeling. Additionally, the benefits of numerical simulation methods for examining rapid and dense flows under microgravity are also discussed. This study may have wide-ranging implications in such fields as investigations of the surface geology of asteroids or the efficient design and development of anchoring mechanisms or space vehicles.</p
    corecore