504 research outputs found

    Does trajectory matter? A study looking into the relationship of trajectory with target engagement and error accommodation in subthalamic nucleus deep brain stimulation

    Get PDF
    Background: STN-DBS is now a key treatment choice for advanced Parkinson’s disease. The optimum target area within the STN is well established. However, no emphasis on the impact of trajectory exists. The ellipsoid shape of the STN and the off-centre traditional target point mean that variation in the electrode inclination should affect STN engagement. Understanding of this relationship could inform trajectory selection during planning by improving STN engagements and margins for error. Methods: We simulated electrode placement at the clinical target through a set of trial trajectories. Twelve 3D-reconstructed STNs were created from MRI data of 6 patients. An appropriate target within each STN was then chosen. Each STN was approached through 56 simulated trajectories arranged in a grid covering a quadrant of skull around and in front of the coronal suture. A subset of 20 viable trajectories was reassessed for depth of engagement in each STN whilst approaching the chosen target. Results: Group averages for each trajectory are presented as traffic light maps and as an overlaid skull mask illustrating recommended electrode entry sites. Trajectories under 30 degrees anterior to the bregma and between 10 to 30 degrees off the midline accommodated over 2.4 degrees of wobble. A mean engagement of 6 mm was possible in half of the subset. The longest engagements are on trajectories which saddle the coronal suture, extending to 40 degrees lateral. Microelectrode tracts of 14 additional STNs were collated using above protocol and engagement exceeded 5 mm in all central trajectories without capsular side effects, suggesting placement away from STN borders. Conclusions: Trajectory selection influences engagement and flexibility to accommodate electrode wobble or brain shift whilst approaching a chosen STN target. We recommend having the first trial trajectory 20 degrees anterior to the bregma, moving postero-laterally in successive trials to balance both error and engagement. When wider margins for error are beneficial (e.g. second side during bilateral procedures), trajectories nearer the coronal suture and around 25 degrees off the midline are advised

    An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    Full text link
    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCETG_{\rm G} recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCETG_{\rm G} we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the soft-gluon approximation. Gauge invariance of the physics results is demonstrated explicitly by performing the calculations in both the light-cone and covariant RÎľR_{\xi} gauges. We also show how the process-dependent medium-induced radiative corrections factorize from the jet production cross section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    Get PDF
    Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics

    Ultraviolet radiation shapes seaweed communities

    Get PDF
    • …
    corecore