29 research outputs found

    Quasi-cyclic LDPC codes of column-weight two using a search algorithm

    Get PDF
    Copyright © 2007 G. Malema and M. Liebelt. This is an Open Access article distributed under the Creative Commons Attributions License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article introduces a search algorithm for constructing quasi-cyclic LDPC codes of column-weight two. To obtain a submatrix structure, rows are divided into groups of equal sizes. Rows in a group are connected in their numerical order to obtain a cyclic structure. Two rows forming a column must be at a specified distance from each other to obtain a given girth. The search for rows satisfying the distance is done sequentially or randomly. Using the proposed algorithm regular and irregular column-weight-two codes are obtained over a wide range of girths, rates, and lengths. The algorithm, which has a complexity linear with respect to the number of rows, provides an easy and fast way to construct quasi-cyclic LDPC codes. Constructed codes show good bit-error rate performance with randomly shifted codes performing better than sequentially shifted ones.Gabofetswe Malema and Michael Liebel

    The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts

    No full text
    In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed
    corecore