48 research outputs found

    Use of Carboxymethyl Cellulose and Collagen Carrier with Equine Bone Lyophilisate Suggests Late Onset Bone Regenerative Effect in a Humerus Drill Defect – A Pilot Study in Six Sheep

    Get PDF
    We assessed the use of a filler compound together with the osteoinductive demineralized bone matrix (DBM), Colloss E. The filler was comprised of carboxymethyl-cellulose and collagen type 1. The purpose of the study was to see if the filler compound would enhance the bone formation and distribute the osteoinductive stimulus throughout the bone defect. Six sheep underwent a bilateral humerus drill defect. The drill hole was filled with a compound consisting of 100 mg CMC, 100 mg collagen powder, and 1 ccm autologous full blood in one side, and a combination of this filler compound and 20 mg Colloss E in the other. The animals were divided into three groups of two animals and observed for 8, 12 and 16 weeks. Drill holes was evaluated using quantitative computed tomography (QCT), micro computed tomography (µCT) and histomorphometry. Mean total bone mineral density (BMD) of each implantation site was calculated with both QCT and µCT. Bone volume to total volume (BV/TV) was analyzed using µCT and histomorphometry. Although not statistically significant, results showed increased bone BMD after 16 weeks in µCT data and an increased BV/TV after 16 weeks in both µCT and histology. Correlation between QCT and µCT was R2 = 0.804. Correlation between histomorphometry and µCT BV/TV data was R2 = 0.8935 and with an average overrepresentation of 8.2% in histomorphometry. In conclusion the CMC-Collagen + Colloss E filler seems like a viable osteogenic bone filler mid- to long term. A correlation was found between the analytical methods used in this study

    Successful outcome of six-level cervicothoracic corpectomy and circumferential reconstruction: case report and review of literature on multilevel cervicothoracic corpectomy

    Get PDF
    The authors report the successful outcome of a six-level corpectomy across the cervico-thoracic spine with circumferential reconstruction in a patient with extensive osteomyelitis of the cervical and upper thoracic spine. To the authors’ knowledge, this is the first report of a corpectomy extending across six levels of the cervico-thoracic spine. Clinical relevance: the authors recommend anterior cage and plate-assisted reconstruction and additional posterior instrumentation using modern spinal surgical techniques and implants

    Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    Get PDF
    Background: Middle age obesity is recognized as a risk factor for Alzheimer’s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings: To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance: Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-a and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokin

    Like pigs, and unlike other breeds of cattle examined, mature Angus-derived adipocytes may extrude lipid prior to proliferation in vitro

    No full text
    A large number of studies have shown that mature adipocytes are able to dedifferentiate in vitro into progeny cells, which possess proliferative capacity and mutilineage potential. Our present study confirms that mature adipocytes derived from Angus cattle also dedifferentiate into proliferative-competent progeny cells. However, this report is unlike any published for all other breeds of cattle we have worked with or that we have seen in published reports, in which mature adipocytes retain and distribute lipids into daughter cells symmetrically or asymmetrically. In the present work, we noted that Angus-derived mature adipocytes extruded a majority of their cellular lipid droplets prior to cell division. In this manner, these cells are processing lipid in a manner observed in mature adipocytes isolated from swine tissue. These results suggest that regulation of the mechanism(s) underlying lipid processing might be different between and within animal breeds. Lipid processing in beef-derived adipocytes during dedifferentiation may serve as a unique animal model for studying lipid metabolism during reverse adipogenesis
    corecore