4,096 research outputs found

    Rights-based reasoning in discussions about lesbian and gay issues: implications for moral educators

    Get PDF
    Despite a paucity of psychological research exploring the interface between lesbian and gay issues and human rights, a human rights framework has been widely adopted in debates to gain equality for lesbians and gay men. Given this prominence within political discourse of human rights as a framework for the promotion of positive social change for lesbians and gay men, the aim of this study was to explore the extent to which rights-based arguments are employed when talking about lesbian and gay issues in a social context. An analysis of six focus group discussions with students showed that when lesbian and gay issues are discussed, rights-based reasoning is employed intermittently, and in relation to certain issues more so than others. The implications of these findings for moral education aimed at promoting positive social change for lesbians and gay men are discussed.</p

    Skyrmion Multi-Walls

    Full text link
    Skyrmion walls are topologically-nontrivial solutions of the Skyrme system which are periodic in two spatial directions. We report numerical investigations which show that solutions representing parallel multi-walls exist. The most stable configuration is that of the square NN-wall, which in the NN\to\infty limit becomes the cubically-symmetric Skyrme crystal. There is also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur

    Theoretical Aspects of Dark Matter Detection

    Get PDF
    Direct and indirect dark matter detection relies on the scattering of the dark matter candidate on nucleons or nuclei. Here, attention is focused on dark matter candidates (neutralinos) predicted in the minimal supersymmetric standard model and its constrained version with universal input soft supersymmetry-breaking masses. Current expectations for elastic scattering cross sections for neutralinos on protons are discussed with particular attention to satisfying all current accelerator constraints as well as insuring a sufficient cosmological relic density to account for the dark matter in the Universe

    Lack of Variation at Phosphoglucose Isomerase (Pgi) in Bumblebees: Implications for Conservation Genetics Studies

    Get PDF
    Assessing genetic variation underlying ecologically important traits is increasingly of interest and importance in population and conservation genetics. For some groups generally useful markers exist for examining the relative role of selection and drift in shaping genetic diversity e.g. the major histocompatibility complex in vertebrates and self-incompatibility loci in plants. For invertebrates there is no such generally useful locus. However, phosphoglucose isomerase (Pgi) has been proposed as a useful functional marker in the conservation genetics of invertebrates. Where thermal microclimate varies, balanced polymorphisms may be maintained due to trade-offs between thermally stable and kinetically advantageous allelic forms. We here report very low levels of Pgi variation in bumblebees rendering this locus to be of little use as an adaptive marker in a conservation genetics context in this group. Potential explanations for this lack of variation are considered

    Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons

    Get PDF
    In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the `electroweak baryons' of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.Comment: 34 pages, 4 figures, additional references adde
    corecore