16 research outputs found
Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors
One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with similar to 90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence.open181
Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors
Abstract The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process