20 research outputs found

    Evidence for Positive Selection on the Osteogenin (BMP3) Gene in Human Populations

    Get PDF
    BACKGROUND: Human skeletal system has evolved rapidly since the dispersal of modern humans from Africa, potentially driven by selection and adaptation. Osteogenin (BMP3) plays an important role in skeletal development and bone osteogenesis as an antagonist of the osteogenic bone morphogenetic proteins, and negatively regulates bone mineral density. METHODOLOGY/PRINCIPAL FINDINGS: Here, we resequenced the BMP3 gene from individuals in four geographically separated modern human populations. Features supportive of positive selection in the BMP3 gene were found including the presence of an excess of nonsynonymous mutations in modern humans, and a significantly lower genetic diversity that deviates from neutrality. The prevalent haplotypes of the first exon region in Europeans demonstrated features of long-range haplotype homogeneity. In contrast with findings in European, the derived allele SNP Arg192Gln shows higher extended haplotype homozygosity in East Asian. The worldwide allele frequency distribution of SNP shows not only a high-derived allele frequency in Asians, but also in Americans, which is suggestive of functional adaptation. CONCLUSIONS/SIGNIFICANCE: In conclusion, we provide evidence for recent positive selection operating upon a crucial gene in skeletal development, which may provide new insight into the evolution of the skeletal system and bone development

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs

    Get PDF
    One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary.Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced “avian” lung structure and high locomotor costs

    Identifying and assessing the benefits of interventions for postnatal depression: a systematic review of economic evaluations

    Get PDF
    Abstract Background Economic evaluations of interventions for postnatal depression (PND) are essential to ensure optimal healthcare decision-making. Due to the wide-ranging effects of PND on the mother, baby and whole family, there is a need to include outcomes for all those affected and to include health and non-health outcomes for accurate estimates of cost-effectiveness. This study aimed to identify interventions to prevent or treat PND for which an economic evaluation had been conducted and to evaluate the health and non-health outcomes included. Methods A systematic review was conducted applying a comprehensive search strategy across eight electronic databases and other sources. Full or partial economic evaluations of interventions involving preventive strategies (including screening), and any treatments for women with or at-risk of PND, conducted in OECD countries were included. We excluded epidemiological studies and those focussing on costs only. The included studies underwent a quality appraisal to inform the analysis. Results Seventeen economic evaluations met the inclusion criteria, the majority focused on psychological /psychosocial interventions. The interventions ranged from additional support from health professionals, peer support, to combined screening and treatment strategies. Maternal health outcomes were measured in all studies; however child health outcomes were included in only four of them. Across studies, the maternal health outcomes included were quality-adjusted-life-years gained, improvement in depressive symptoms, PND cases detected or recovered, whereas the child health outcomes included were cognitive functioning, depression, sleep and temperament. Non-health outcomes such as couples’ relationships and parent-infant interaction were rarely included. Other methodological issues such as limitations in the time horizon and perspective(s) adopted were identified, that were likely to result in imprecise estimates of benefits. Conclusions The exclusion of relevant health and non-health outcomes may mean that only a partial assessment of cost-effectiveness is undertaken, leading to sub-optimal resource allocation decisions. Future research should seek ways to expand the evaluative space of economic evaluations and explore approaches to integrate health and non-health outcomes for all individuals affected by this condition. There is a need to ensure that the time horizon adopted in studies is appropriate to allow true estimation of the long-term benefits and costs of PND interventions

    Exploring Diagonal Gait Using a Forward Dynamic Three-Dimensional Chimpanzee Simulation

    No full text
    Primates are unusual among terrestrial quadrupedal mammals in that at walking speeds they prefer diagonal rather than lateral gaits. A number of reasons have been proposed for this preference in relation to the arboreal ancestry of modern primates: stability, energetic cost, neural control, skeletal loading, and limb interference avoiding. However, this is a difficult question to explore experimentally since most primates only occasionally use anything other than diagonal gaits. An alternative approach is to produce biologically realistic computer simulations of primate gait that enable the constraints of biomechanical loading and the energetics of different modes of locomotion to be explored. In this paper we describe such a model for the chimpanzee Pan troglodytes. The simulation is able to produce spontaneous quadrupedal locomotion, and the footfall sequences generated are split between lateral and diagonal footfall sequences with no obvious energetic benefit associated with either option. However, out of 10 successful simulation runs, 5 were lateral sequence/lateral couplet gaits indicating a preference for a specific lateral footfall sequence with a relatively tightly constrained phase difference between the fore- and hindlimbs. This suggests that the choice of diagonal walking gaits in chimpanzees is not a simple mechanical phenomenon and that diagonal walking gaits in primates are selected for by multiple factors. Copyright © 2013 S. Karger AG, Basel
    corecore