16 research outputs found
Personal non-commercial use only
ABSTRACT. Objective. To determine the level of residual inflammation [synovitis, bone marrow edema (BME), tenosynovitis, and total inflammation] quantified by hand magnetic resonance imaging (h-MRI) in patients with rheumatoid arthritis (RA) in remission according to 3 different definitions of clinical remission, and to compare these remission definitions. Methods. A cross-sectional study. To assess the level of residual MRI inflammation in remission, cutoff levels associated to remission and median scores of MRI residual inflammatory lesions were calculated. Data from an MRI register of patients with RA who have various levels of disease activity were used. These were used for the analyses: synovitis, BME according to the Rheumatoid Arthritis Magnetic Resonance Imaging Scoring system, tenosynovitis, total inflammation, and disease activity composite measures recorded at the time of MRI. Receiver-operating characteristic analysis was used to identify the best cutoffs associated with remission for each inflammatory lesion on h-MRI. Median values of each inflammatory lesion for each definition of remission were also calculated. Results. A total of 388 h-MRI sets of patients with RA with different levels of disease activity, 130 in remission, were included. Cutoff values associated with remission according to the Simplified Disease Activity Index (SDAI) ≤ 3.3 and the Boolean American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) definitions for BME and tenosynovitis (1 and 3, respectively) were lower than BME and tenosynovitis (2 and 5, respectively) for the Disease Activity Score on 28 joints (DAS28) ≤ 2.6. Median scores for synovitis, BME, and total inflammation were also lower for the SDAI and Boolean ACR/EULAR remission criteria compared with DAS28. Conclusion. Patients with RA in remission according to the SDAI and Boolean ACR/EULAR definitions showed lower levels of MRI-detected residual inflammation compared with DAS28
Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease
<p>Abstract</p> <p>Background</p> <p>It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT) in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem.</p> <p>Methods</p> <p>In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR) with delayed-enhancement technique to confirm or exclude myocardial infarction.</p> <p>Results</p> <p>There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR.</p> <p>Conclusion</p> <p>Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.</p
X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD
The unfolded protein response and its relevance to connective tissue diseases
The unfolded protein response (UPR) has evolved to counter the stresses that occur in the endoplasmic reticulum (ER) as a result of misfolded proteins. This sophisticated quality control system attempts to restore homeostasis through the action of a number of different pathways that are coordinated in the first instance by the ER stress-senor proteins IRE1, ATF6 and PERK. However, prolonged ER-stress-related UPR can have detrimental effects on cell function and, in the longer term, may induce apoptosis. Connective tissue cells such as fibroblasts, osteoblasts and chondrocytes synthesise and secrete large quantities of proteins and mutations in many of these gene products give rise to heritable disorders of connective tissues. Until recently, these mutant gene products were thought to exert their effect through the assembly of a defective extracellular matrix that ultimately disrupted tissue structure and function. However, it is now becoming clear that ER stress and UPR, because of the expression of a mutant gene product, is not only a feature of, but may be a key mediator in the initiation and progression of a whole range of different connective tissue diseases. This review focuses on ER stress and the UPR that characterises an increasing number of connective tissue diseases and highlights novel therapeutic opportunities that may arise
SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium
Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop’s center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.This project was carried out in the frame of the MELONOMICS project (2009–2012) of the Fundación Genoma España and with the contributions of the PLAT KKBE project PIM2010PKB-00691.Peer reviewe
Erratum: Proteostasis control by the unfolded protein response
International audienceno abstrac