12 research outputs found

    Fire Ant Decapitating Fly Cooperative Release Programs (1994–2008): Two Pseudacteon Species, P. tricuspis and P. curvatus, Rapidly Expand Across Imported Fire Ant Populations in the Southeastern United States

    Get PDF
    Natural enemies of the imported fire ants, Solenopsis invicta Buren S. richteri Forel (Hymenoptera: Formicidae), and their hybrid, include a suite of more than 20 fire ant decapitating phorid flies from South America in the genus Pseudacteon. Over the past 12 years, many researchers and associates have cooperated in introducing several species as classical or self-sustaining biological control agents in the United States. As a result, two species of flies, Pseudacteon tricuspis Borgmeier and P. curvatus Borgmeier (Diptera: Phoridae), are well established across large areas of the southeastern United States. Whereas many researchers have published local and state information about the establishment and spread of these flies, here distribution data from both published and unpublished sources has been compiled for the entire United States with the goal of presenting confirmed and probable distributions as of the fall of 2008. Documented rates of expansion were also used to predict the distribution of these flies three years later in the fall of 2011. In the fall of 2008, eleven years after the first successful release, we estimate that P. tricuspis covered about 50% of the fire ant quarantined area and that it will occur in almost 65% of the quarantine area by 2011. Complete coverage of the fire ant quarantined area will be delayed or limited by this species' slow rate of spread and frequent failure to establish in more northerly portions of the fire ant range and also, perhaps, by its preference for red imported fire ants (S. invicta). Eight years after the first successful release of P. curvatus, two biotypes of this species (one biotype occurring predominantly in the black and hybrid imported fire ants and the other occurring in red imported fire ants) covered almost 60% of the fire ant quarantined area. We estimate these two biotypes will cover almost 90% of the quarantine area by 2011 and 100% by 2012 or 2013. Strategic selection of several distributional gaps for future releases will accelerate complete coverage of quarantine areas. However, some gaps may be best used for the release of additional species of decapitating flies because establishment rates may be higher in areas without competing species

    The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests

    Get PDF
    Science and society are increasingly interested in predicting the effects of global change and socio-economic development on natural systems, to ensure maintenance of both ecosystems and human well-being. The Intergovernmental Platform on Biodiversity and Ecosystem Services has identified the combination of ecological modelling and scenario forecasting as key to improving our understanding of those effects, by evaluating the relationships and feedbacks between direct and indirect drivers of change, biodiversity, and ecosystem services. Using as case study the forests of the Mediterranean basin (complex socio-ecological systems of high social and conservation value), we reviewed the literature to assess (1) what are the modelling approaches most commonly used to predict the condition and trends of biodiversity and ecosystem services under future scenarios of global change, (2) what are the drivers of change considered in future scenarios and at what scales, and (3) what are the nature and ecosystem service indicators most commonly evaluated. Our review shows that forecasting studies make relatively little use of modelling approaches accounting for actual ecological processes and feedbacks between different socio-ecological sectors; predictions are generally made on the basis of a single (mainly climate) or a few drivers of change. In general, there is a bias in the set of nature and ecosystem service indicators assessed. In particular, cultural services and human well-being are greatly underrepresented in the literature. We argue that these shortfalls hamper our capacity to make the best use of predictive tools to inform decision-making in the context of global change.This work was supported by the Spanish Government through the INMODES project (grant number CGL2017-89999-C2-2-R), the ERA-NET FORESTERRA project INFORMED (grant number 29183), and the project Boscos Sans per a una Societat Saludable funded by Obra Social la Caixa (https://obrasociallacaixa.org/). AMO and AA were supported by Spanish Government through the “Juan de la Cierva” fellowship program (IJCI-2016-30349 and IJCI-2016-30049, respectively). JVRD was supported by the Government of Asturias and the FP7-Marie Curie-COFUND program of the European Commission (Grant “Clarín” ACA17-02)

    Pest species distribution modelling: origins and lessons from history

    No full text
    Pest species distribution modelling was designed to extrapolate risks in the biosecurity sector in order to protect agricultural crops against the spread of both endemic and introduced pest species. The need to identify sources of biological control agents for importation added to this demand. Independently, biogeographers mapped species distributions to interpolate their niche requirements. Recently the threat of climate change caused an explosion in demand for guidance on likely shifts in potential distributions of species. The different technology platforms in the two sectors resulted in divergence in their approaches to mapping actual and potential species distributions under rapidly changing environmental scenarios. Much of the contemporary discussion of species mapping ignores the lessons from the history of pest species distribution modelling. This has major implications for modelling of the non-equilibrium distributions of all species that occur with rapid climate change. The current review is intended to remind researchers of historical findings and their significance for current mapping of all species. I argue that the dream of automating species mapping for multiple species is an illusion. More modest goals and use of other approaches are necessary to protect biodiversity under current and future climates. Pest risk mapping tools have greater prospects of success because they are generic in nature and so able to be used both to interpolate and to extrapolate from field observations of any species based on climatic variables. In addition invasive species are less numerous and usually better understood, while the risk assessments are applied on regional scales in which climate is the dominant variable

    Modeling intertidal crab distribution patterns using photographic mapping among tropical Australian estuaries

    No full text
    Intertidal crabs are abundant in tropical estuaries and have bio-indicator potential. However, the use of intertidal crabs in guiding management actions is limited because high-replication, cost-effective tools to analyze their distribution patterns at large scales are lacking. This study used assemblage modeling and photography to rapidly build formal understanding of the spatial organization of crab communities in the low intertidal zone, between mean sea level at low spring tide and the edge of the mangrove forest, within and among estuaries. A classification and regression tree model revealed seven distinct habitats based on relative occurrence of five species (Uca coarctata, Uca seismella, Macrophthalmus japonicus, Metopograpsus frontalis, and Metopograpsus latifrons) among eight estuaries along 160 km of coast in North Queensland, Australia (18°28'-19° degrees 25' S, 146° 12'-147° 14' E), across four sampling trips between April 2009 and October 2010. Photography provided high-replication sampling across a large area relative to the aim of the study but did not represent the whole intertidal crab community. Complementary hand collections within one estuary allowed the occurrences of three other species (Perisesarma longicristatum, Australoplax tridentata, and Metopograpsus thukuhar) to be fitted into the model. Species occurred across habitats, yet a high occurrence of different species characterized each habitat. The presence of some species not usually found on low intertidal banks suggested connectivity across the intertidal landscape. The model provided a formal basis to add previous small "site or transect specific" scale spatial distribution knowledge as well as other ecological information. Areas with outlying values can be identified as research and management priorities in the absence of other information, although this prioritization should be done with care. The approach may be transferable to other organisms and systems to provide rapid, cost-effective information on the distribution of key fauna where background understanding and resources are limited
    corecore