28 research outputs found

    Use of chromatin immunoprecipitation (ChIP) to detect transcription factor binding to highly homologous promoters in chromatin isolated from unstimulated and activated primary human B cells

    Get PDF
    The Chromatin Immunoprecipiation (ChIP) provides a powerful technique for identifying the in vivo association of transcription factors with regulatory elements. However, obtaining meaningful information for promoter interactions is extremely challenging when the promoter is a member of a class of highly homologous elements. Use of PCR primers with small numbers of mutations can limit cross-hybridization with non-targeted sequences and distinguish a pattern of binding for factors with the regulatory element of interest. In this report, we demonstrate the selective in vivo association of NF-κB, p300 and CREB with the human Iγ1 promoter located in the intronic region upstream of the Cγ1 exons in the immunoglobulin heavy chain locus. These methods have the ability to extend ChIP analysis to promoters with a high degree of homology

    Peritonitis and Concurrent Bacteremia in a Patient With a History of Alcoholic Cirrhosis

    No full text
    Spontaneous bacterial peritonitis (SBP) is a recognized cause of morbidity and mortality in cirrhotic patients. Enterobacteriaceae have been isolated from the majority of peritonitis cases and the gram negative aerobe Escherichia coli is the most commonly isolated organism. Anaerobic organisms are rarely isolated because of the high oxygen tension in ascetic fluid. We report a patient with a history of alcoholic cirrhosis who developed SBP and concurrent bacteremia with the anaerobe Clostridium tertium . The patient was successfully treated with intravenous antibiotics and was discharged home on oral ciprofloxacin. This case report is unique in that it is the fourth documented Clostridium tertium SBP case, utilized MALDI-TOF mass spectrometry for organism identification, and susceptibility testing for select antibiotics was performed

    Deciphering CD30 ligand biology and its role in humoral immunity

    No full text
    Ligands and receptors in the tumour necrosis factor (TNF) and tumour necrosis factor receptor (TNFR) superfamilies have been the subject of extensive investigation over the past 10–15 years. For certain TNFR family members, such as Fas and CD40, some of the consequences of receptor ligation were predicted before the identification and cloning of their corresponding ligands through in vitro functional studies using agonistic receptor-specific antibodies. For other members of the TNFR family, including CD30, cross-linking the receptor with specific antibodies failed to yield many clues about the functional significance of the relevant ligand–receptor interactions. In many instances, the subsequent availability of TNF family ligands in the form of recombinant protein facilitated the determination of biological consequences of interactions with their relevant receptor in both in vitro and in vivo settings. In the case of CD30 ligand (CD30L; CD153), definition of its biological role remained frustratingly elusive. Early functional studies using CD30L(+) cells or agonistic CD30-specific antibodies logically focused attention on cell types that had been shown to express CD30, namely certain lymphoid malignancies and subsets of activated T cells. However, it was not immediately clear how the reported activities from these in vitro studies relate to the biological activity of CD30L in the more complex whole animal setting. Recently, results from in vivo models involving CD30 or CD30L gene disruption, CD30L overexpression, or pharmacological blockade of CD30/CD30L interactions have begun to provide clues about the role played by CD30L in immunological processes. In this review we consider the reported biology of CD30L and focus on results from several recent studies that point to an important role for CD30/CD30L interactions in humoral immune responses

    Divide and conquer: the importance of cell division in regulating B-cell responses

    No full text
    Proliferation is an essential characteristic of clonal selection and is required for the expansion of antigen reactive clones leading to the development of antibody of different isotypes and memory cells. New data for mouse and human B cells point to an important role for division in regulating isotype class and in optimizing development of protective immunity by the regulated entry of cells to the plasma cell lineage
    corecore