13,494 research outputs found

    Improvement of Text Dependent Speaker Identification System Using Neuro-Genetic Hybrid Algorithm in Office Environmental Conditions

    Get PDF
    In this paper, an improved strategy for automated text dependent speaker identification system has been proposed in noisy environment. The identification process incorporates the Neuro-Genetic hybrid algorithm with cepstral based features. To remove the background noise from the source utterance, wiener filter has been used. Different speech pre-processing techniques such as start-end point detection algorithm, pre-emphasis filtering, frame blocking and windowing have been used to process the speech utterances. RCC, MFCC, ?MFCC, ??MFCC, LPC and LPCC have been used to extract the features. After feature extraction of the speech, Neuro-Genetic hybrid algorithm has been used in the learning and identification purposes. Features are extracted by using different techniques to optimize the performance of the identification. According to the VALID speech database, the highest speaker identification rate of 100.000% for studio environment and 82.33% for office environmental conditions have been achieved in the close set text dependent speaker identification system

    Estimation of Rain Attenuation at EHF bands for Earth-to-Satellite Links in Bangladesh

    Full text link
    Due to heavy congestion in lower frequency bands, engineers are looking for new frequency bands to support new services that require higher data rates, which in turn needs broader bandwidths. To meet this requirement, extremely high frequency (EHF), particularly Q (36 to 46 GHz) and V (46 to 56 GHz) bands, is the best viable solution because of its complete availability. The most serious challenge the EHF band poses is the attenuation caused by rain. This paper investigates the effect of the rain on Q and V bands' performances in Bangladeshi climatic conditions. The rain attenuations of the two bands are predicted for the four main regions of Bangladesh using ITU rain attenuation model. The measured rain statistics is used for this prediction. It is observed that the attenuation due to rain in the Q/V band reaches up to 150 dB which is much higher than that of the currently used Ka band. The variability of the rain attenuation is also investigated over different sessions of Bangladesh. The attenuation varies from 40 dB to 170 dB depending on the months. Finally, the amount of rain fade required to compensate the high rain attenuation is also predicted for different elevation angles.Comment: Int'l Conf. on Electrical, Computer and Communication Engineering (IEEE sponsored), Cox's Bazar, Bangladesh, February 2017, pp. 589-59
    • …
    corecore