9 research outputs found

    Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target

    Get PDF
    Conceived and designed the experiments: FS PC BC ES AM. Performed the experiments: FS RS ES PF SR. Analyzed the data: FS BC ES PF GEK PFC AM. Contributed reagents/materials/analysis tools: PC PB GC. Wrote the paper: FS GEK BC AM.The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.Yeshttp://www.plosone.org/static/editorial#pee

    Low abundance does not mean less importance in cysteine metabolism

    No full text
    The cysteine molecule plays an essential role in cells because it is part of proteins and because it functions as a reduced sulfur donor molecule. In addition, the cysteine molecule may also play a role in the redox signaling of different stress processes. Even though the synthesis of cysteine by the most abundant of the isoforms of O-acetylserine(thiol) lyase in the chloroplast, the mitochondria and the cytosol is relatively well-understood, the role of the other less common isoforms homologous to O-acetylserine(thiol)lyase is unknown. Several studies on two of these isoforms, one located in the cytosol and the other one in the chloroplast, have shown that while one isoform operates with a desulfhydrase activity and is essential to regulate the homeostasis of cysteine in the cytosol, the other, located in the chloroplast, synthesizes S-sulfocysteine. This metabolite appears to be essential for the redox regulation of the chloroplast under certain lighting conditions
    corecore