646 research outputs found

    A Qualitative Analysis of Student Understanding of Team Function Through the use of the Jefferson Teamwork Observation Guide (JTOG)

    Get PDF
    Background: Several early IOM reports identified the need to educate medical and health professions students in delivering patient-centered care as members of interprofessional teams (IOM, 2001; IOM, 2003). Evidence shows that conducting interprofessional education during education and training prepares student learners for collaborative practice when they enter the workplace, which in turn helps to achieve the Triple Aim of 1) enhancing the patient experience; 2) improving the health of populations; and 3) decreasing costs (WHO, 2010; Berwick, et al., 2008). One way to prepare students for collaborative practice is to have them observe real teams in action. Thus, the Jefferson Teamwork Observation Guide (JTOG) was created to serve as an educational tool in aiding students to better recognize the characteristics of effective teams. It has since been used to assess teams in the majority of clinical observation, simulation and collaborative practice activities offered by Jefferson Center for Interprofessional Education (JCIPE). The JTOG is a two-part assessment comprised of identifiable characteristics of well-functioning teams drawn from the literature about teamwork. The first part consists of Likert Scale questions (strongly disagree to strongly agree) regarding the behavior of the interprofessional team observed in the domains of Values/Ethics in Interprofessional Practice, Roles/Responsibilities, Interprofessional Communication, Teams and Teamwork, and Leadership (IPEC, 2011; IPEC 2016). The second part includes qualitative questions relating to team-based care, patient-centered care, and teamwork

    Poisonings Associated with Intubation: US National Poison Data System Exposures 2000-2013.

    Get PDF
    Patients may be intubated after exposure to a variety of substances because of respiratory failure, CNS sedation, pulmonary pathology, or cardiovascular instability. However, there is little data describing the types of substances that are associated with endotracheal intubation or the rates of intubation after these exposures. Evaluation of this association may inform future research on intubation after exposures to specific substances and guide poison prevention education. Our objective was to determine which exposures were commonly associated with intubation using the data from National Poison Data System (NPDS). The NPDS tracks data from potential exposures to substances reported to all American Association of Poison Control Centers. We performed a retrospective analysis of NPDS data from January 1st, 2000 to December 31st, 2013 to identify human exposures to substances that were associated with endotracheal intubation. Descriptive statistics were used to analyze the data. There were 93,474 single substance exposures and 228,507 multiple substance exposures that were associated with intubation. The most common exposures to substances that were associated with intubation were atypical antipsychotics (7.4 %) for single exposures and benzodiazepines (27.4 %) for multiple exposures. Within each age group, the most common known exposures to substances were for patients under 6 years, clonidine for single and multiple exposures; for patients aged 6-12 years, clonidine for single exposures and atypical antipsychotics for multiple exposures; for patients aged 13-19 years, atypical antipsychotics for single and multiple exposures; and for patients over 19 years, atypical antipsychotics for single exposures and benzodiazepines for multiple exposures. From 2000-2013, the exposures to substances most commonly associated with intubation varied by single versus multiple exposures and by age. This study helps clarify the exposures to substances that are associated with intubation reported to poison centers in the USA

    Small Hairy Black Holes in Global AdS Spacetime

    Full text link
    We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a reference adde

    Technical challenges to surgical clipping of aneurysmal regrowth with coil herniation following endovascular treatment – a case report

    Get PDF
    In recent years, technical developments have made endovascular procedures attractive therapeutic options and enabled the endovascular surgeon to redefine the management of cerebral aneurysms. However, as the number of aneurysms undergoing endovascular therapy has grown, so has the number of patients with incompletely treated aneurysms who are presenting for further management. In cases of failure of endovascular treatment caused by either incomplete occlusion or regrowth of the aneurysm, a complementary treatment is often necessary. Surgical treatment of these patients is challenging. We present a case of a ruptured posterior cerebral artery aneurysm treated initially with endovascular coiling that left behind significant residual aneurysmal sac. Regrowth of the aneurysm documented on follow-up was treated surgically. At surgery, the coil was found to have herniated through the aneurysmal sac into the subarachnoid space, and the aneurysm was successfully clipped without removing the coils. We review the regrowth of aneurysms following endovascular therapy and potential problems and challenges of surgically managing these lesions

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =10−18=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =10−24=10^{-24}), with a sensitivity 390±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg
    • …
    corecore