564 research outputs found

    A Qualitative Analysis of Student Understanding of Team Function Through the use of the Jefferson Teamwork Observation Guide (JTOG)

    Get PDF
    Background: Several early IOM reports identified the need to educate medical and health professions students in delivering patient-centered care as members of interprofessional teams (IOM, 2001; IOM, 2003). Evidence shows that conducting interprofessional education during education and training prepares student learners for collaborative practice when they enter the workplace, which in turn helps to achieve the Triple Aim of 1) enhancing the patient experience; 2) improving the health of populations; and 3) decreasing costs (WHO, 2010; Berwick, et al., 2008). One way to prepare students for collaborative practice is to have them observe real teams in action. Thus, the Jefferson Teamwork Observation Guide (JTOG) was created to serve as an educational tool in aiding students to better recognize the characteristics of effective teams. It has since been used to assess teams in the majority of clinical observation, simulation and collaborative practice activities offered by Jefferson Center for Interprofessional Education (JCIPE). The JTOG is a two-part assessment comprised of identifiable characteristics of well-functioning teams drawn from the literature about teamwork. The first part consists of Likert Scale questions (strongly disagree to strongly agree) regarding the behavior of the interprofessional team observed in the domains of Values/Ethics in Interprofessional Practice, Roles/Responsibilities, Interprofessional Communication, Teams and Teamwork, and Leadership (IPEC, 2011; IPEC 2016). The second part includes qualitative questions relating to team-based care, patient-centered care, and teamwork

    Poisonings Associated with Intubation: US National Poison Data System Exposures 2000-2013.

    Get PDF
    Patients may be intubated after exposure to a variety of substances because of respiratory failure, CNS sedation, pulmonary pathology, or cardiovascular instability. However, there is little data describing the types of substances that are associated with endotracheal intubation or the rates of intubation after these exposures. Evaluation of this association may inform future research on intubation after exposures to specific substances and guide poison prevention education. Our objective was to determine which exposures were commonly associated with intubation using the data from National Poison Data System (NPDS). The NPDS tracks data from potential exposures to substances reported to all American Association of Poison Control Centers. We performed a retrospective analysis of NPDS data from January 1st, 2000 to December 31st, 2013 to identify human exposures to substances that were associated with endotracheal intubation. Descriptive statistics were used to analyze the data. There were 93,474 single substance exposures and 228,507 multiple substance exposures that were associated with intubation. The most common exposures to substances that were associated with intubation were atypical antipsychotics (7.4 %) for single exposures and benzodiazepines (27.4 %) for multiple exposures. Within each age group, the most common known exposures to substances were for patients under 6 years, clonidine for single and multiple exposures; for patients aged 6-12 years, clonidine for single exposures and atypical antipsychotics for multiple exposures; for patients aged 13-19 years, atypical antipsychotics for single and multiple exposures; and for patients over 19 years, atypical antipsychotics for single exposures and benzodiazepines for multiple exposures. From 2000-2013, the exposures to substances most commonly associated with intubation varied by single versus multiple exposures and by age. This study helps clarify the exposures to substances that are associated with intubation reported to poison centers in the USA

    Small Hairy Black Holes in Global AdS Spacetime

    Full text link
    We study small charged black holes in global AdS spacetime in the presence of a charged massless minimally coupled scalar field. In a certain parameter range these black holes suffer from well known superradiant instabilities. We demonstrate that the end point of the resultant tachyon condensation process is a hairy black hole which we construct analytically in a perturbative expansion in the black hole radius. At leading order our solution is a small undeformed RNAdS black hole immersed into a charged scalar condensate that fills the AdS `box'. These hairy black hole solutions appear in a two parameter family labelled by their mass and charge. Their mass is bounded from below by a function of their charge; at the lower bound a hairy black hole reduces to a regular horizon free soliton which can also be thought of as a nonlinear Bose condensate. We compute the microcanonical phase diagram of our system at small mass, and demonstrate that it exhibits a second order `phase transition' between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a reference adde

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =10āˆ’18=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =10āˆ’24=10^{-24}), with a sensitivity 390Ā±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    BRCA1/2 mutation testing in breast cancer patients: a prospective study of the long-term psychological impact of approach during adjuvant radiotherapy

    Get PDF
    This study assessed psychological distress during the first year after diagnosis in breast cancer patients approached for genetic counseling at the start of adjuvant radiotherapy and identified those vulnerable to long-term high distress. Of the approached patients some chose to receive a DNA test result (nĀ =Ā 58), some were approached but did not fulfill criteria for referral (nĀ =Ā 118) and some declined counseling and/or testing (nĀ =Ā 44). The comparative group consisted of patients not eligible for genetic counseling (nĀ =Ā 182) and was therefore not approached. Patients actively approached for genetic counseling showed no more long-term distress than patients not eligible for such counseling. There were no differences between the subgroups of approached patients. Predictors for long-term high distress or an increase in distress over time were pre-existing high distress and a low quality of life, having children, and having no family members with breast cancer. It is concluded that breast cancer patients can be systematically screened and approached for genetic counseling during adjuvant radiotherapy without imposing extra psychological burden. Patients vulnerable to long-term high distress already displayed high distress shortly after diagnosis with no influence of their medical treatment on their level of distress at long-term
    • ā€¦
    corecore