12 research outputs found
The Hexameric Structures of Human Heat Shock Protein 90
The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood.Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90.While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis
The role of epigenetics in renal ageing
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects
Design optimization of TTEthernet-based distributed real-time systems
Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements interconnected in a network. Our focus in this paper is on the TTEthernet protocol, a deterministic, synchronized and congestion-free network protocol based on the Ethernet standard and compliant with the ARINC 664 Specification Part 7. TTEthernet is highly suitable for safety-critical real-time applications since it offers separation for messages using the concept of virtual links and supports three time-criticality classes: Time-Triggered (TT), Rate-Constrained (RC) and Best-Effort. In this paper we are interested in the design optimization of TTEthernet networks used to transmit real-time application messages. Given the set of TT and RC messages, and the topology of the network, our approach optimizes the packing of messages in frames, the assignment of frames to virtual links, the routing of virtual links and the TT static schedules, such that all frames are schedulable and the worst-case end-to-end delay of the RC messages is minimized. We propose a Tabu Search-based metaheuristic for this optimization problem. The proposed algorithm has been evaluated using several benchmarks