564 research outputs found
ICD-10 implementation: Is the workforce ready?
After many delays, the U.S. finally implemented ICD-10-CM/PCS on October 1, 2015, bringing the U.S. into line with other industrialized nations, most of which have been using ICD-10 for many years. We outline the benefits and challenges to the preparatory activities of the ICD-10-CM/PCS implementation for the U.S. healthcare industry. To ease the transition, CMS allowed healthcare facilities to submit test claims prior to the implementation date, and delivered feedback on the acceptability of those claims. Early results indicated a relatively smooth transition, although some questions regarding the available data remain. Additional data, especially data concerning outcomes, is required
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes
BACKGROUND: African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. RESULTS: We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. CONCLUSIONS: By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users
Task-Related Effects on the Temporal and Spatial Dynamics of Resting-State Functional Connectivity in the Default Network
Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state, usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed two primary modes of FC, assessed using a posterior cingulate seed – a robust correlation among DN regions that is stable both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas, including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into resting-state periods
Prevalence, characteristics, and impacts of work-related musculoskeletal disorders: a survey among physical therapists in the State of Kuwait
<p>Abstract</p> <p>Background</p> <p>Physical therapists working in the State of Kuwait are at risk of work-related musculoskeletal disorders (WMSDs). However, prevalence rates and risk factors are not well documented. The objective of this study was to determine the prevalence, characteristics, and impacts of WMSDs among physical therapists in the State of Kuwait.</p> <p>Methods</p> <p>A self-administered questionnaire was distributed to 350 physical therapists. The questionnaire gathered demographic data as well as information on occurrence of musculoskeletal complaints in the previous 12 months. Descriptive statistics, frequency, and Chi-square analyses were used.</p> <p>Results</p> <p>The response rate to the questionnaire was 63% (222/350). Of the 212 responders included in the study, the one-year prevalence of WMSDs was 47.6%, with lower back complaints as the most common (32%). This was followed by neck (21%), upper back (19%), shoulder (13%), hand/wrist (11%), knee (11%), ankle/foot (6%), elbow (4%), and hip/thigh (3%) complaints. The frequency of WMSDs was not gender related (except lower back, neck, and shoulder complaints) nor was it related to age (except lower back complaints), working venues (except hand/wrist), working hours, area of specialty, or exercise. WMSDs' impact on work was minor.</p> <p>Conclusions</p> <p>WMSDs among physical therapists in Kuwait were common, with lower back and neck affected most. Lower back and neck WMSDs were related to the participant's demographics. Hand/wrist WMSDs were related to work settings. Further research is needed to investigate the effect of risk factors as physical load, psychosocial load, and general health status on prevalence musculoskeletal disorders.</p
Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres
Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.
A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
Improving education in primary care: development of an online curriculum using the blended learning model
<p>Abstract</p> <p>Background</p> <p>Standardizing the experiences of medical students in a community preceptorship where clinical sites vary by geography and discipline can be challenging. Computer-assisted learning is prevalent in medical education and can help standardize experiences, but often is not used to its fullest advantage. A blended learning curriculum combining web-based modules with face-to-face learning can ensure students obtain core curricular principles.</p> <p>Methods</p> <p>This course was developed and used at The Case Western Reserve University School of Medicine and its associated preceptorship sites in the greater Cleveland area. Leaders of a two-year elective continuity experience at the Case Western Reserve School of Medicine used adult learning principles to develop four interactive online modules presenting basics of office practice, difficult patient interviews, common primary care diagnoses, and disease prevention. They can be viewed at <url>http://casemed.case.edu/cpcp/curriculum</url>. Students completed surveys rating the content and technical performance of each module and completed a Generalist OSCE exam at the end of the course.</p> <p>Results</p> <p>Participating students rated all aspects of the course highly; particularly those related to charting and direct patient care. Additionally, they scored very well on the Generalist OSCE exam.</p> <p>Conclusion</p> <p>Students found the web-based modules to be valuable and to enhance their clinical learning. The blended learning model is a useful tool in designing web-based curriculum for enhancing the clinical curriculum of medical students.</p
- …