8,802 research outputs found

    Pyrolysis of Wastewater Biosolids Significantly Reduces Estrogenicity

    Get PDF
    Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as a biosolids treatment process that could remove estrogenic compounds from solids while producing a less hormonally active biochar for soil amendment. The estrogenicity, measured in estradiol equivalents (EEQ) by the yeast estrogen screen (YES) assay, of pyrolyzed biosolids was compared to primary and anaerobically digested biosolids. The estrogenic responses from primary solids and anaerobically digested solids were not statistically significantly different, but pyrolysis of anaerobically digested solids resulted in a significant reduction in EEQ; increasing pyrolysis temperature from 100 °C to 500 °C increased the removal of EEQ with greater than 95% removal occurring at or above 400 °C. This research demonstrates that biosolids treatment with pyrolysis would substantially decrease (removal \u3e 95%) the estrogens associated with this biosolids product. Thus, pyrolysis of biosolids can be used to produce a valuable soil amendment product, biochar, that minimizes discharge of estrogens to the environment

    Quasi-rigidity: some uniqueness issues

    Full text link
    Quasi-rigidity means that one builds a theory for assemblies of grains under a slowly changing external load by using the deformation of those grains as a small parameter. Is quasi-rigidity a complete theory for these granular assemblies? Does it provide unique predictions of the assembly's behavior, or must some other process be invoked to decide between several possibilities? We provide evidence that quasi-rigidity is a complete theory by showing that two possible sources of indeterminacy do not exist for the case of disk shaped grains. One possible source of indeterminacy arises from zero-frequency modes present in the packing. This problem can be solved by considering the conditions required to obtain force equilibrium. A second possible source of indeterminacy is the necessity to choose the status (sliding or non-sliding) at each contact. We show that only one choice is permitted, if contacts slide only when required by Coulomb friction.Comment: 14 pages, 3 figures, submitted to Phys Rev E (introduction and conclusion revised

    Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, and Nonylphenol from Biosolids

    Get PDF
    Reusing biosolids is vital for the sustainability of wastewater management. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich py-gas and py-oil, and a beneficial soil amendment, biochar. Batch biosolids pyrolysis (60 minutes) revealed that triclocarban and triclosan were removed (to below quantification limit) at 200 °C and 300 °C, respectively. Substantial removal (\u3e90%) of nonylphenol was achieved at 300 °C as well, but 600 °C was required to remove nonylphenol to below the quantification limit. At 500 °C, the pyrolysis reaction time to remove \u3e90% of microconstituents was less than 5 minutes. Fate studies revealed that microconstituents were both volatilized and thermochemically transformed during pyrolysis; microconstituents with higher vapor pressures were more likely to volatilize and leave the pyrolysis reactor before being transformed than compounds with lower vapor pressures. Reductive dehalogenation products of triclocarban and suspected dehalogenation products of triclosan were identified in py-gas. Application of biosolids-derived biochar to soil in place of biosolids has potential to minimize organic microconstituents discharged to the environment provided appropriate management of py-gas and py-oil

    Farm-gate nitrogen balances on intensive dairy farms in the south west of Ireland

    Get PDF
    peer-reviewedNitrogen management and farm-gate N balances were evaluated on 21 intensive dairy farms in the south west of Ireland for each of four years (2003 to 2006). The mean annual stocking density was equivalent to 202 kg/ha (s.d. 29.6) of N excreted by livestock on the farm. The mean annual farm-gate N surplus (imports – exports) declined between 2003 and 2006 (277 to 232 kg/ha, s.e. 6.8; P < 0.001) due to a decline in annual N imports (fertilizer, feed and imported manures; 335 to 288 kg/ha, s.e. 6.9; P < 0.001). Overall annual fertilizer N use on the farms decreased during the study period (266 to 223 kg/ha, s.e. 6.5; P < 0.001) mainly due to lower inputs for the first application in spring and for the production of first-cut silage. These decreases were partly offset by applying more slurry in spring for early grazing and for first-cut silage. The introduction of white clover resulted in lower N imports on four farms. Export of N from farms was unaffected by reductions in N imports. The mean efficiency of N use tended to increase over time (0.18 in 2003 to 0.20 in 2006). The large variation in quantities of fertilizer N applied on farms with similar stocking densities suggests potential for further improvements in the efficiency of N use. In terms of fertilizer N use, complying with S.I. No. 378 of 2006 did not require major changes in the N management practiceson 19 of the farms.This project was part-funded by the European Research and Development Fund under INTERREG IIIB: Green Dairy Project N° 100 and partly by the Dairy Levy. Financial support for post-graduate students involved in this study was provided by the Teagasc Walsh Fellowship Scheme

    Using geophysical surveys to test tracer-based storage estimates in headwater catchments

    Get PDF
    Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t−2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus

    Get PDF
    A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A cluster has revealed an extensive cavity system. The system was created by a continuous outflow or a series of bursts from the nucleus of the central galaxy over the past 200-500 Myr. The cavities have displaced 10% of the plasma within a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology in the hot gas. The surface brightness decrements are consistent with empty cavities oriented within 40 degrees of the plane of the sky. The outflow has deposited upward of 10^61 erg into the cluster gas, most of which was propelled beyond the inner ~100 kpc cooling region. The supermassive black hole has accreted at a rate of approximately 0.1-0.25 solar masses per year over this time frame, which is a small fraction of the Eddington rate of a ~10^9 solar mass black hole, but is dramatically larger than the Bondi rate. Given the previous evidence for a circumnuclear disk of cold gas in Hydra A, these results are consistent with the AGN being powered primarily by infalling cold gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such low frequency synchrotron emission may be an excellent proxy for X-ray cavities and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's suggestion

    Background heatflow on hotspot planets: Io and Venus

    Get PDF
    On planets where most of the heat is transported to the surface by igneous activity (extrusive volcanism or near-surface intrusions), the surface heatflow at localities well away from regions of current igneous activity need not be even approximately the conductive heatflow through the entire lithosphere but may instead be dominated by the residual heat leaking out from the last igneous event in that locality. On Io, it is likely that (Îșτ)^(1/2) « lithosphere thickness ( Îș = thermal diffusivity, τ = typical time between “resurfacing” events) and the background heatflow may be very large, comparable or even larger than the current observational heatflow, which is associated with the hotspots alone. This upward revision of Io's heatflow is compatible with observations and with recent indications of a non-steady tidal and thermal evolution. On Venus, (Îșτ)^(1/2) is probably comparable to the lithosphere thickness and the resulting upward revision of heatflow may be only marginally significant, unless magmatic activity is enormously greater than on Earth

    Spatial Correlations in Compressible Granular Flows

    Get PDF
    For a freely evolving granular fluid, the buildup of spatial correlations in density and flow field is described using fluctuating hydrodynamics. The theory for incompressible flows is extended to the general, compressible case, including longitudinal velocity and density fluctuations, and yields qualitatively different results for long range correlations. The structure factor of density fluctuations shows a maximum at finite wavenumber, shifting in time to smaller wavenumbers and corresponding to a growing correlation length. It agrees well with two-dimensional molecular dynamics simulations.Comment: 12 pages, Latex, 3 figure
    • 

    corecore