9,646 research outputs found

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Molecular motion in cell membranes: analytic study of fence-hindered random walks

    Full text link
    A theoretical calculation is presented to describe the confined motion of transmembrane molecules in cell membranes. The study is analytic, based on Master equations for the probability of the molecules moving as random walkers, and leads to explicit usable solutions including expressions for the molecular mean square displacement and effective diffusion constants. One outcome is a detailed understanding of the dependence of the time variation of the mean square displacement on the initial placement of the molecule within the confined region. How to use the calculations is illustrated by extracting (confinement) compartment sizes from experimentally reported published observations from single particle tracking experiments on the diffusion of gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell membrane, and by further comparing the analytical results to observations on the diffusion of phospholipids, also in normal rat kidney cells.Comment: 10 pages, 5 figure

    Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    Full text link
    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.Comment: 9 pages, 5 figure

    Key principle of the efficient running, swimming, and flying

    Full text link
    Empirical observations indicate striking similarities among locomotion in terrestrial animals, birds, and fish, but unifying physical grounds are lacking. When applied to efficient locomotion, the analytical mechanics principle of minimum action yields two patterns of mechanical similarity via two explicit spatiotemporal coherent states. In steady locomotory modes, the slow muscles determining maximal optimum speeds maintain universal intrinsic muscular pressure. Otherwise, maximal speeds are due to constant mass-dependent stiffness of fast muscles generating a uniform force field, exceeding gravitation. Being coherent in displacements, velocities and forces, the body appendages of animals are tuned to natural propagation frequency through the state-dependent elastic muscle moduli. Key words: variational principle of minimum action (04.20.Fy), locomotion (87.19.ru), biomechanics (87.85.G-).Comment: Submitted to the Europhysical Letter

    A general scheme for modeling gamma-ray burst prompt emission

    Full text link
    We describe a general method for modeling gamma-ray burst prompt emission. We find that for the burst to be produced via the synchrotron process unphysical conditions are required -- the distance of the source from the center of the explosion (RγR_\gamma) must be larger than ∼1017\sim 10^{17}cm and the source Lorentz factor \gta 10^3; for such a high Lorentz factor the deceleration radius (RdR_d) is less than RγR_\gamma even if the number density of particles in the surrounding medium is as small as ∼0.1\sim 0.1 cm−3^{-3}. The result, Rγ>RdR_\gamma > R_d, is in contradiction with the early x-ray and optical afterglow data. The synchrotron-self-Compton (SSC) process fares much better. There is a large solution space for a typical GRB prompt emission to be produced via the SSC process. The prompt optical emission accompanying the burst is found to be very bright (\lta 14 mag; for z∼2z\sim2) in the SSC model, which exceeds the observed flux (or upper limit) for most GRBs. Continuous acceleration of electrons can significantly reduce the optical flux and bring it down to the observed limits. (Abridged)Comment: Published in MNRAS Jan 2008, 56 page

    Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin induces broad protection against influenza virus challenge in mice

    Get PDF
    Seasonal influenza virus infections cause up to half a million deaths each year, the majority of which are older adults. Annual influenza virus vaccination protects against disease, but in the event of a mismatch between the circulating strain and vaccine strain, vaccine effectiveness is severely impacted. Therefore, there is an urgent need for a vaccine that induces broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach in designing such a universal influenza virus vaccine is based on targeting conserved regions of the influenza virus hemagglutinin (HA), the major glycoprotein on the surface of the virus. Using chimeric hemagglutinin constructs (cHA), the immune system can be primed to produce antibody responses against the conserved immunosubdominant stalk region rather than the variable immunodominant head region. Furthermore, replication deficient viral vectors based on Chimpanzee Adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA) virus expressing the influenza virus internal antigens, such as the nucleoprotein (NP) and the matrix protein 1 (M1), are capable of inducing strong influenza specific T cell responses in vaccinated individuals. This is another approach towards a broadly cross-protective influenza vaccine given the degree of conservation of NP and M1 across different influenza virus strains. Here, we combine these two platforms to evaluate the efficacy of a viral vector-based group 2 cHA intramuscular vaccination regime in mice to confer protection against influenza virus challenge of matched and mismatched group 2 strains. We show that vectored vaccines expressing both cHA and an NP-M1 fusion protein, in a prime-boost regimen (with different cHAs given at each vaccination), provide enhanced protection against H3N2 and H10N8 virus challenge when compared to vaccination with cHA alone or NP-M1 alone. The vaccine induced antibody responses against divergent HAs, NP, M1, and whole virus correlated with nature of administered vaccine and extent of protection seen across vaccinated groups. Influenza specific T cell responses were also increased in the vectored vaccines expressing both the cHA and the NP-M1 fusion protein. For further characterization, we are interested in looking at an optimal vaccination regimen, the possibility of an additional boost to induce cross-reactive antibodies, and the nature of the induced antibodies. Overall, these results improve our understanding of vaccination platforms capable of harnessing cellular and humoral immunity with the ultimate goal of designing a universal influenza vaccine

    Numerical simulation of time delay interferometry for eLISA/NGO

    Full text link
    eLISA/NGO is a new gravitational wave detection proposal with arm length of 10^6 km and one interferometer down-scaled from LISA. Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for eLISA/NGO, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have performed the numerical simulation of the time delay interferometry (TDI) for LISA and ASTROD-GW with one arm dysfunctional by using the CGC 2.7 ephemeris. The results are well below their respective limits which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 1000-day optimized mission orbits of the eLISA/NGO spacecraft starting at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use the numerical method to calculate the residual optical path differences in the second-generation TDI solutions as in our previous papers. The maximum path length difference, for all configurations calculated, is below 13 mm (43 ps). It is well below the limit which the laser frequency noise is required to be suppressed for eLISA/NGO. We compare and discuss the resulting differences due to the different arm lengths for various mission proposals -- eLISA/NGO, an NGO-LISA-type mission with a nominal arm length of 2 x 10^6 km, LISA and ASTROD-GW.Comment: 17 pages, 13 figures, 3 tables, minor changes in description to match the accepted version of Classical and Quantum Gravity. arXiv admin note: text overlap with arXiv:1102.496

    Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam

    Get PDF
    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 um). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).Comment: 8 pages, 5 figures, SPIE Conference proceeding

    Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene

    Get PDF
    Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)
    • …
    corecore