45 research outputs found
No topoisomerase I alteration in a neuroblastoma model with in vivo acquired resistance to irinotecan
CPT-11 (irinotecan) is a DNA-topoisomerase I inhibitor with preclinical activity against neuroblastoma (NB) xenografts. The aim was to establish in vivo an NB xenograft resistant to CPT-11 in order to study the resistance mechanisms acquired in a therapeutic setting. IGR-NB8 is an immature NB xenograft with MYCN amplification and 1p deletion, which is sensitive to CPT-11. Athymic mice bearing advanced-stage subcutaneous tumours were treated with CPT-11 (27 mg kg−1 day−1 × 5) every 21 days (1 cycle) for a maximum of four cycles. After tumour regrowth, a new in vivo passage was performed and the CPT-11 treatment was repeated. After the third passage, a resistant xenograft was obtained (IGRNB8-R). The tumour growth delay (TGD) was reduced from 115 at passage 1 to 40 at passage 4 and no complete or partial regression was observed. After further exposure to the drug, up to 28 passages, the resistant xenograft was definitively established with a TGD from 17 at passage 28. Resistant tumours reverted to sensitive tumours after 15 passages without treatment. IGR-NB8-R remained sensitive to cyclophosphamide and cisplatin and cross-resistance was observed with the topoisomerase I inhibitor topotecan. No quantitative or qualitative topoisomerase I modifications were observed. The level of expression of multidrug resistance 1 (MDR1), MDR-associated protein 1 (MRP1) and, breast cancer resistance protein, three members of the ATP-binding cassette transporter family was not modified over passages. Our results suggest a novel resistance mechanism, probably not involving the mechanisms usually observed in vitro
Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines
Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (,MDR1) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported solely using mRNA data. In this study, me describe a BCRP-specific monoclonal antibody, BXP-34, obtained from mice, immunized with mitoxantrone-resistant, BCRP mRNA-positive MCF-7 MR human breast cancer cells. BCRP was detected in BCRP-transfected cells and in several mitoxantrone- and topotecan-selected tumor cell sublines. Pronounced staining of the cell membranes showed that the transporter is mainly present at the plasma membrane, In a panel of human tumors, including primary turners as well as drug-treated breast cancer and acute myeloid leukemia samples. BCRP was low or undetectable. Extended studies will be required to analyze the possible contribution of BCRP to clinical multidrug resistance
Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines
Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (,MDR1) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported solely using mRNA data. In this study, me describe a BCRP-specific monoclonal antibody, BXP-34, obtained from mice, immunized with mitoxantrone-resistant, BCRP mRNA-positive MCF-7 MR human breast cancer cells. BCRP was detected in BCRP-transfected cells and in several mitoxantrone- and topotecan-selected tumor cell sublines. Pronounced staining of the cell membranes showed that the transporter is mainly present at the plasma membrane, In a panel of human tumors, including primary turners as well as drug-treated breast cancer and acute myeloid leukemia samples. BCRP was low or undetectable. Extended studies will be required to analyze the possible contribution of BCRP to clinical multidrug resistance