3 research outputs found
Nanoelectromechanical coupling in fullerene peapods probed via resonant electrical transport experiments
Fullerene peapods, that is carbon nanotubes encapsulating fullerene
molecules, can offer enhanced functionality with respect to empty nanotubes.
However, the present incomplete understanding of how a nanotube is affected by
entrapped fullerenes is an obstacle for peapods to reach their full potential
in nanoscale electronic applications. Here, we investigate the effect of C60
fullerenes on electron transport via peapod quantum dots. Compared to empty
nanotubes, we find an abnormal temperature dependence of Coulomb blockade
oscillations, indicating the presence of a nanoelectromechanical coupling
between electronic states of the nanotube and mechanical vibrations of the
fullerenes. This provides a method to detect the C60 presence and to probe the
interplay between electrical and mechanical excitations in peapods, which thus
emerge as a new class of nanoelectromechanical systems.Comment: 7 pages, 3 figures. Published in Nature Communications. Free online
access to the published version until Sept 30th, 2010, see
http://www.nature.com/ncomms/journal/v1/n4/abs/ncomms1034.htm
Doppler velocimetry of spin propagation in a two-dimensional electron gas
Controlling the flow of electrons by manipulation of their spin is a key to
the development of spin-based electronics. While recent demonstrations of
electrical-gate control in spin-transistor configurations show great promise,
operation at room temperature remains elusive. Further progress requires a
deeper understanding of the propagation of spin polarization, particularly in
the high mobility semiconductors used for devices. Here we report the
application of Doppler velocimetry to resolve the motion of spin-polarized
electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that
the spin mobility tracks the high electron mobility precisely as a function of
T. However, we also observe that the coherent precession of spins driven by
spin-orbit interaction, which is essential for the operation of a broad class
of spin logic devices, breaks down at temperatures above 150 K for reasons that
are not understood theoretically