8,655 research outputs found

    The scaling of X-ray variability with luminosity in Ultra-luminous X-ray sources

    Full text link
    We investigated the relationship between the X-ray variability amplitude and X-ray luminosity for a sample of 14 bright Ultra-luminous X-ray sources (ULXs) with XMM-Newton/EPIC data, and compare it with the well established similar relationship for Active Galactic Nuclei (AGN). We computed the normalised excess variance in the 2-10 keV light curves of these objects and their 2-10 keV band intrinsic luminosity. We also determined model "variability-luminosity" relationships for AGN, under several assumptions regarding their power-spectral shape. We compared these model predictions at low luminosities with the ULX data. The variability amplitude of the ULXs is significantly smaller than that expected from a simple extrapolation of the AGN "variability-luminosity" relationship at low luminosities. We also find evidence for an anti-correlation between the variability amplitude and L(2-10 keV) for ULXs. The shape of this relationship is consistent with the AGN data but only if the ULXs data are shifted by four orders of magnitudes in luminosity. Most (but not all) of the ULXs could be "scaled-down" version of AGN if we assume that: i) their black hole mass and accretion rate are of the order of ~(2.5-30)x 10E+03 Msolar and ~ 1-80 % of the Eddington limit, and ii) their Power Spectral Density has a doubly broken power-law shape. This PDS shape and accretion rate is consistent with Galactic black hole systems operating in their so-called "low-hard" and "very-high" states.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in A&

    Assessment of sensory neuropathy in patients with diabetic foot problems

    Get PDF
    Our aim of this study was to compare the accuracy of three different modalities for testing sensory neuropathy in diabetic patients with and without diabetic foot problems. The three devices used included the pin-prick testing using the Neurotip® (PPT), the Semmes–Weinstein 5.07/10 g monofilament testing (SWMT), and the rapid-current perception threshold (R-CPT) measurements using the Neurometer® testing. Our study population consisted of 54 patients (108 feet) with diabetic foot problems treated at the National University Hospital in Singapore by our multi-disciplinary diabetic foot care team. Our results showed no difference in sensory neuropathy detected by PPT and 5.07/10 g SWMT in both the pathological and normal foot. In the pathological foot, there was significant increase in sensory neuropathy detected by the Neurometer® device at both the big toe and ankle sites as compared to PPT and 5.07/10 g SWMT. In the normal foot, there was a significant increase in sensory neuropathy detected by the Neurometer® device at the big toe site only as compared to PPT and 5.07/10 g SWMT. Finally, the Neurometer® measurements detected a statistically higher proportion of feet with sensory neuropathy as compared to detection by the PPT or 5.07/10 g SWMT

    Iron Regulation of Hepcidin Despite Attenuated Smad1,5,8 Signaling in Mice Without Transferrin Receptor 2 or Hfe.

    Get PDF
    BACKGROUND & AIMS: HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. METHODS: Hepatic iron concentrations and messenger RNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad) 1,5,8 and Id1 messenger RNA levels were measured as markers of Bmp/Smad signaling. RESULTS: Whereas Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also showed attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. CONCLUSIONS: These observations show that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via the Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver Bmp6 messenger RNA or steady-state P-Smad1,5,8 levels

    Quantum gates using electronic and nuclear spins of Yb+^{+} in a magnetic field gradient

    Full text link
    An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+^+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed

    Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) is rare in most parts of the world but is a common malignancy in southern China, especially in Guangdong. Dietary habit is regarded as an important modifier of NPC risk in several endemic areas and may partially explain the geographic distribution of NPC incidence. In China, rapid economic development during the past few decades has changed the predominant lifestyle and dietary habits of the Chinese considerably, requiring a reassessment of diet and its potential influence on NPC risk in this NPC-endemic area.</p> <p>Methods</p> <p>To evaluate the association between dietary factors and NPC risk in Guangdong, China, a large-scale, hospital-based case-control study was conducted. 1387 eligible cases and 1459 frequency matched controls were recruited. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were estimated using a logistic regression model, adjusting for age, sex, education, dialect, and habitation household type.</p> <p>Results</p> <p>Observations made include the following: 1) consumption of canton-style salted fish, preserved vegetables and preserved/cured meat were significantly associated with increased risk of NPC, with enhanced odds ratios (OR) of 2.45 (95% CI: 2.03-2.94), 3.17(95% CI: 2.68-3.77) and 2.09 (95% CI: 1.22-3.60) respectively in the highest intake frequency stratum during childhood; 2) consumption of fresh fruit was associated with reduced risk with a dose-dependent relationship (p = 0.001); and 3) consumption of Canton-style herbal tea and herbal slow-cooked soup was associated with decreased risk, with ORs of 0.84 (95% CI: 0.68-1.03) and 0.58 (95% CI: 0.47-0.72) respectively in the highest intake frequency stratum. In multivariate analyses, these associations remained significant.</p> <p>Conclusions</p> <p>It can be inferred that previously established dietary risk factors in the Cantonese population are still stable and have contributed to the incidence of NPC.</p

    The Maximal U(1)LU(1)_L Inverse Seesaw from d=5d=5 Operator and Oscillating Asymmetric Sneutrino Dark Matter

    Get PDF
    The maximal U(1)LU(1)_L supersymmetric inverse seesaw mechanism (MLLSIS) provides a natural way to relate asymmetric dark matter (ADM) with neutrino physics. In this paper we point out that, MLLSIS is a natural outcome if one dynamically realizes the inverse seesaw mechanism in the next-to minimal supersymmetric standard model (NMSSM) via the dimension-five operator (N)2S2/M(N)^2S^2/M_*, with SS the NMSSM singlet developing TeV scale VEV; it slightly violates lepton number due to the suppression by the fundamental scale MM_*, thus preserving U(1)LU(1)_L maximally. The resulting sneutrino is a distinguishable ADM candidate, oscillating and favored to have weak scale mass. A fairly large annihilating cross section of such a heavy ADM is available due to the presence of singlet.Comment: journal versio

    Absence of Scaling in the Integer Quantum Hall Effect

    Full text link
    We have studied the conductivity peak in the transition region between the two lowest integer Quantum Hall states using transmission measurements of edge magnetoplasmons. The width of the transition region is found to increase linearly with frequency but remains finite when extrapolated to zero frequency and temperature. Contrary to prevalent theoretical pictures, our data does not show the scaling characteristics of critical phenomena.These results suggest that a different mechanism governs the transition in our experiment.Comment: Minor changes and new references include

    Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously
    corecore