25 research outputs found

    Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate

    No full text
    Background: Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider importance in terms of gene regulation and disease risk. Here, we studied ASM by focusing on blood-based DNA collected from 24 subjects comprising a 3-generation pedigree from the Norfolk Island genetic isolate. We applied a genome-wide bisulphite sequencing approach with a genotype-independent ASM calling method to map ASM across the genome. Regions of ASM were then tested for enrichment at gene regulatory regions using Genomic Association Test (GAT) tool. Results: In total, we identified 1.12 M CpGs of which 147,170 (13%) exhibited ASM (P ≤ 0.05). When including contiguous ASM signal spanning ≥ 2 CpGs, this condensed to 12,761 ASM regions (AMRs). These AMRs tagged 79% of known imprinting regions and most (98.1%) co-localised with known single nucleotide variants. Notably, miRNA and lncRNA showed a 3.3- and 1.8-fold enrichment of AMRs, respectively (P < 0.005). Also, the 5′ UTR and start codons each showed a 3.5-fold enrichment of AMRs (P < 0.005). There was also enrichment of AMRs observed at subtelomeric regions of many chromosomes. Five out of 11 large AMRs localised to the protocadherin cluster on chromosome 5. Conclusions: This study shows ASM extends far beyond genomic imprinting in humans and that gene regulatory regions are hotspots for ASM. Future studies of ASM in pedigrees should help to clarify transgenerational inheritance patterns in relation to genotype and disease phenotypes.</p

    An inactivated cell culture Japanese encephalitis vaccine (JEADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody

    No full text
    West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and β2-microglobulindeficient (β2m) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, β2m mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8 T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory Bcell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic
    corecore