187 research outputs found

    Risk of Stillbirth in the Relation to Water Disinfection By-Products: A Population-Based Case-Control Study in Taiwan

    Get PDF
    Background: Few epidemiological studies that have assessed the relation between water disinfection by-products (DBPs) and the risk of stillbirth provide inconsistent results. The objective was to assess the relation between exposure to water disinfection by-products and the risk of stillbirth. Methods: We conducted a population-based case-control study of 3,289 cases of stillbirth and a random sample of 32,890 control subjects from 396,049 Taiwanese newborns in 2001–2003 using information from the Birth Registry and Waterworks Registry in Taiwan. We compared the risk of stillbirth in four disinfection by-product exposure categories based on the levels of total trihalomethanes (TTHMs) representing high (TTHMs 20+ mg/L), medium (TTHMs 10–19 mg/L), low exposure (TTHMs 5–9 mg/L), and 0–4 mg/L as the reference category. In addition, we conducted a meta-analysis of the results from the present and 5 previous studies focusing on stillbirth. Findings: In logistic regression analysis adjusting for gender, maternal age, plurality, conception of season and population density of the municipality where the mother lived during pregnancy, the odds ratio (OR) for stillbirth was 1.10 (95 % CI 1.00–1.21) for medium exposure and 1.06 (95 % 0.96–1.17) for high exposure compared to reference category. In the metaanalysis, the summary odds ratio for stillbirth (1.11, 95 % CI: 1.03, 1.19) was consistently elevated. Conclusions: The present study is consistent with the hypothesis that the risk of stillbirth is related to prenatal exposure t

    Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Gap junctions are membrane channels formed by an array of connexins which links adjacent cells realizing an electro- metabolic synapse. Connexin-mediated communication is crucial in the regulation of cell growth, differentiation, and development. The activation and proliferation of phenotypically altered fibroblasts are central events in the pathogenesis of idiopathic pulmonary fibrosis. We sought to evaluate the role of connexin-43, the most abundant gap-junction subunit in the human lung, in the pathogenesis of this condition. METHODS: We investigated the transcription and protein expression of connexin-43 and the gap-junctional intercellular communication (GJIC) in 5 primary lung fibroblast lines derived from normal subjects (NF) and from 3 histologically proven IPF patients (FF). RESULTS: Here we show that connexin-43 mRNA was significantly reduced in FF as demonstrated by standard and quantitative RT-PCR. GJIC was functionally evaluated by means of flow-cytometry. In order to demonstrate that dye spreading was taking place through gap junctions, we used carbenoxolone as a pharmacological gap-junction blocker. Carbenoxolone specifically blocked GJIC in our system in a concentration dependent manner. FF showed a significantly reduced homologous GJIC compared to NF. Similarly, GJIC was significantly impaired in FF when a heterologous NF line was used as dye donor, suggesting a complete defect in GJIC of FF. CONCLUSION: These results suggest a novel alteration in primary lung fibroblasts from IPF patients. The reduced Cx43 expression and the associated alteration in cell-to-cell communication may justify some of the known pathological characteristic of this devastating disease that still represents a challenge to the medical practice

    Characterization of Multiple Ion Channels in Cultured Human Cardiac Fibroblasts

    Get PDF
    Background: Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts. Methods and Findings: A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 μM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR). Conclusions: These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling. © 2009 Li et al.published_or_final_versio

    Gut Microbiota, Probiotics and Diabetes

    Get PDF
    Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated

    Defining Terms Used for Animals Working in Support Roles for People with Support Needs

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: De-identified qualitative data can be made available by contacting the lead author.The nomenclature used to describe animals working in roles supporting people can be confusing. The same term may be used to describe different roles, or two terms may mean the same thing. This confusion is evident among researchers, practitioners, and end users. Because certain animal roles are provided with legal protections and/or government-funding support in some jurisdictions, it is necessary to clearly define the existing terms to avoid confusion. The aim of this paper is to provide operationalized definitions for nine terms, which would be useful in many world regions: "assistance animal", "companion animal", "educational/school support animal", "emotional support animal", "facility animal", "service animal", "skilled companion animal", "therapy animal", and "visiting/visitation animal". At the International Society for Anthrozoology (ISAZ) conferences in 2018 and 2020, over 100 delegates participated in workshops to define these terms, many of whom co-authored this paper. Through an iterative process, we have defined the nine terms and explained how they differ from each other. We recommend phasing out two terms (i.e., "skilled companion animal" and "service animal") due to overlap with other terms that could potentially exacerbate confusion. The implications for several regions of the world are discussed

    Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study

    Full text link
    Background: Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective: In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse propagation. Methods: Two different mathematical models of the human ventricular action potential were used to formulate models of the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the stage for malignant life-threatening arrhythmias. Results: Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective heterogeneous remodeling of expression levels for the Na+ /Ca2+ exchanger and SERCA pump decrease these heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural remodeling during heart failure. Conclusion: An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In combination these changes set the stage for arrhythmias.This work was partially supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds - ERDF - FEDER), (ii) the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and (iii) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Gómez García, JF.; Cardona, K.; Romero Pérez, L.; Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE. 9(9). https://doi.org/10.1371/journal.pone.0106602S9
    corecore