36 research outputs found

    Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma

    Get PDF
    Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork

    Review on Fire Performance of Cellular Lightweight Concrete

    Get PDF
    Structural fire damage can be identified as a common accidental disaster throughout the world which cause thousands of deaths, injuries and millions in property damage each year. Fire represents one of the most severe conditions to which structures may be subjected. Generally, structural elements will be exposed to very high temperature (1200 ℃) during a fire propagation. Fire safety of a structure is measured in terms of fire resistance, which is the duration that a structural member can exhibit resistance with respect to structural integrity, stability and heat transmission. Concrete generally provides better fire resisting characteristics compared to the other construction materials due to its low thermal conductivity, high heat capacity and slower strength degradation with temperature. Cellular lightweight concrete (CLC) is one of the novel type of concrete which can be identified as a better construction material than conventional concrete due to its numerous advantages. However, limited research work has been carried out to determine the fire performance of CLC. Fire response of structural members depends on the thermal, mechanical and deformation properties of the structural material at elevated temperatures. Even though properties at elevated temperatures for normal weight concrete is available in literature, properties of CLC at elevated temperatures (ambient to 1200 ℃) is not thoroughly investigated. Further, CLC fire rating under natural/parametric fire situations and under hydrocarbon fire situations needs to be studied. EN 1992.1.2 provides minimum thickness requirements under standard fire situations for non-loadbearing and load bearing normal weight concrete walls, but for CLC, these values are not available, hence required to be included. Also, parameters and material property limitations related to spalling effect of CLC during fire exposure has not being investigated. Moreover, residual characteristics of CLC walls after fire situations and ability to withstand a second fire situation needs to be assessed
    corecore