603 research outputs found

    Inflammation and endothelial function: Direct vascular effects of human C-reactive protein on nitric oxide bioavailability

    Get PDF
    Background - Circulating concentrations of the sensitive inflammatory marker C-reactive protein (CRP) predict future cardiovascular events, and CRP is elevated during sepsis and inflammation, when vascular reactivity may be modulated. We therefore investigated the direct effect of CRP on vascular reactivity. Methods and Results - The effects of isolated, pure human CRP on vasoreactivity and protein expression were studied in vascular rings and cells in vitro, and effects on blood pressure were studied in rats in vivo. The temporal relationship between changes in CRP concentration and brachial flow-mediated dilation was also studied in humans after vaccination with Salmonella typhi capsular polysaccharide, a model of inflammatory endothelial dysfunction. In contrast to some previous reports, highly purified and well-characterized human CRP specifically induced hyporeactivity to phenylephrine in rings of human internal mammary artery and rat aorta that was mediated through physiological antagonism by nitric oxide (NO). CRP did not alter endothelial NO synthase protein expression but increased protein expression of GTP cyclohydrolase-1, the rate-limiting enzyme in the synthesis of tetrahydrobiopterin, the NO synthase cofactor. In the vaccine model of inflammatory endothelial dysfunction in humans, increased CRP concentration coincided with the resolution rather than the development of endothelial dysfunction, consistent with the vitro findings; however, administration of human CRP to rats had no effect on blood pressure. Conclusions - Pure human CRP has specific, direct effects on vascular function in vitro via increased NO production; however, further clarification of the effect, if any, of CRP on vascular reactivity in humans in vivo will require clinical studies using specific inhibitors of CRP. © 2005 American Heart Association, Inc

    Copper Deficiency, Lead, and Paraoxonase

    Get PDF

    Repeat doses of antibody to serum amyloid P component clear amyloid deposits in patients with systemic amyloidosis

    Get PDF
    Systemic amyloidosis is a fatal disorder caused by pathological extracellular deposits of amyloid fibrils that are always coated with the normal plasma protein, serum amyloid P component (SAP). The small-molecule drug, miridesap, [(R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC)] depletes circulating SAP but leaves some SAP in amyloid deposits. This residual SAP is a specific target for dezamizumab, a fully humanized monoclonal IgG1 anti-SAP antibody that triggers immunotherapeutic clearance of amyloid. We report the safety, pharmacokinetics, and dose-response effects of up to three cycles of miridesap followed by dezamizumab in 23 adult subjects with systemic amyloidosis (ClinicalTrials.gov identifier: NCT01777243). Amyloid load was measured scintigraphically by amyloid-specific radioligand binding of 123I-labeled SAP or of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid. Organ extracellular volume was measured by equilibrium magnetic resonance imaging and liver stiffness by transient elastography. The treatment was well tolerated with the main adverse event being self-limiting early onset rashes after higher antibody doses related to whole body amyloid load. Progressive dose-related clearance of hepatic amyloid was associated with improved liver function tests. 123I-SAP scintigraphy confirmed amyloid removal from the spleen and kidneys. No adverse cardiac events attributable to the intervention occurred in the six subjects with cardiac amyloidosis. Amyloid load reduction by miridesap treatment followed by dezamizumab has the potential to improve management and outcome in systemic amyloidosis

    Comparative study of the stabilities of synthetic in vitro and natural ex vivo transthyretin amyloid fibrils

    Get PDF
    Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro using either the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were -12.36 kcal mol-1, -8.10 kcal mol-1 and -10.61 kcal mol-1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods for structural comparison between ex vivo fibrils and fibrils generated in vitro Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology
    • …
    corecore