5 research outputs found

    The role of P2 receptors in controlling infections by intracellular pathogens

    Get PDF
    A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens

    The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates.

    No full text
    The spinocerebellar ataxia type 2 (SCA2) is caused by a trinucleotide (CAG) expansion in the coding region of the ataxin 2 gene on chromosome 12q.89 families with autosomal dominant cerebellar ataxia (ADCA) types I, II and III, and 47 isolated cases with idiopathic late onset cerebellar ataxia (ILOCA), were analysed for this mutation. The identification of the SCA2 mutation in 31 out of 38 families with the ADCA I phenotype, but in none of those with ADCA II, ADCA III or ILOCA confirms the specificity of this mutation. A clinical comparison of the ADCA I patients with the three known mutations (SCA1, -2 or -3) highlights significant differences between the groups; SCA2 patients tended to have a longer disease duration, a higher frequency of slow saccades and depressed tendon reflexes. However, these neurological signs were also seen in an ADCA I family in which the SCA2 mutation was not identified, illustrating the importance of a direct genetic test. The SCA2 families were from different geographical and ethnic backgrounds. However, haplotype analysis failed to show evidence of a founder mutation, even in families from the same geographical origin. The range of normal alleles varied from 17 to 30 CAG repeats and from 35 to 51 repeats for the pathological alleles. Similar to the other diseases caused by unstable trinucleotide repeats, a significant inverse correlation has been found between the number of repeats and age of onset, and there is a significantly higher paternal instability of repeat length on transmission to offspring. The SCA2 mutation is the most frequent amongst ADCA I patients, accounting for 40%, compared with SCA1 and SCA3 which account for 35% and 15%, respectively
    corecore