10 research outputs found

    Expanding the diversity of mycobacteriophages: Insights into genome architecture and evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. © 2011 Hatfull et al

    Aebp2 as an Epigenetic Regulator for Neural Crest Cells

    No full text
    Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2). We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.open112120sciescopu

    DNA-binding motif and target genes of the imprinted transcription factor PEG3

    No full text
    The Peg3 gene is expressed only from the paternally inherited allele located on proximal mouse chromosome 7. The PEG3 protein encoded by this imprinted gene is predicted to bind DNA based on its multiple zinc finger motifs and nuclear localization. In the current study, we demonstrated PEG3's DNA-binding ability by characterizing its binding motif and target genes. We successfully identified target regions bound by PEG3 from mouse brain extracts using chromatin immunoprecipitation analysis. PEG3 was demonstrated to bind these candidate regions through the consensus DNA-binding motif AGTnnCnnnTGGCT. In vitro promoter assays established that PEG3 controls the expression of a given gene through this motif. Consistent with these observations, the transcriptional levels of a subset of the target genes are also affected in a mutant mouse model with reduced levels of PEG3 protein. Overall, these results confirm PEG3 as a DNA-binding protein controlling specific target genes that are involved in distinct cellular functions. Published by Elsevier B.V.X113230sciescopu
    corecore