85 research outputs found

    Relationship between hearing function and myasthenia gravis: a contemporary review

    Get PDF
    There is increasing evidence of a connection between hearing function and myasthenia gravis (MG). Studies of the pathophysiological basis of this relationship suggest that acetylcholine receptors (AChRs) on outer hair cells (OHCs) play a central role. In patients with MG, autoantibodies against AChRs induce a progressive loss of AChRs on OHCs, decreasing their electromotility. The stapedial reflex decay test can be altered in MG patients, and can be used as an additional tool for diagnosis and monitoring. Transient evoked and distortion product otoacoustic emissions are the main diagnostic tool for monitoring OHC functionality in MG patients, and can be used to record subclinical hearing alterations before the onset of clinically evident hearing loss. Understanding the association between MG and hearing dysfunction requires a multidisciplinary approach. Otolaryngologists should take this relationship into account when approaching patients with a diagnosis of myasthenia gravis and "in patients with MG" with à€Ł128;\u9cin MG patients, and the progress of hearing alterations should always be monitored in patients with MG

    Next generation sequencing study on RNA viruses of Vespa velutina and Apis mellifera sharing the same foraging area

    Get PDF
    The predator Asian hornet (Vespa velutina) represents one of the major threats to honeybee survival. Viral spillover from bee to wasp has been supposed in several studies, and this work aims to identify and study the virome of both insect species living simultaneously in the same foraging area. Transcriptomic analysis was performed on V. velutina and Apis mellifera samples, and replicative form of detected viruses was carried out by strand‐specific RT‐PCR. Overall, 6 and 9 different viral types were reported in V. velutina and A. mellifera, respectively, and five of these viruses were recorded in both hosts. Varroa destructor virus‐1 and Cripavirus NB‐1/2011/HUN (now classified as Triato‐like virus) were the most represented viruses detected in both hosts, also in replicative form. In this investigation, Triato‐like virus, as well as Aphis gossypii virus and Nora virus, was detected for the first time in honeybees. Concerning V. velutina, we report for the first time the recently detected honeybee La Jolla virus. A general high homology rate between genomes of shared viruses between V. velutina and A. mellifera suggests the efficient transmission of the virus from bee to wasp. In conclusion, our findings highlight the presence of several known and newly reported RNA viruses infecting A. mellifera and V. velutina. This confirms the environment role as an important source of infection and indicates the possibility of spillover from prey to predator

    In Vitro Antibacterial Activity of Manuka (Leptospermum scoparium J.R. et G. Forst) and winter Savory (Satureja montana L.) Essential Oils and Their Blends against Pathogenic E. coli Isolates from Pigs

    Get PDF
    Neonatal diarrhoea (ND), post-weaning diarrhoea (PWD) and oedema disease (OD) are among the most important diseases affecting pig farming due to economic losses. Among the main aetiological agents, strains of Escherichia coli are identified as the major responsible pathogens involved. Several strategies have been put in place to prevent these infections and, today, research is increasingly studying alternative methods to antibiotics to reduce the antibiotic resistance phenomenon. Essential oils (EOs) are among the alternative tools that are being investigated. In this study, the in vitro effectiveness of winter savory and manuka essential oils and their mixtures in different proportions against strains of E. coli isolated from episodes of disease in pigs was evaluated. The EOs alone demonstrated slight antibacterial effectiveness, whereas the blends, by virtue of their synergistic action, showed remarkable activity, especially the 70%–30% winter savory–manuka blend, showing itself as a potential tool for prevention and therapy

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
    • 

    corecore