1,473 research outputs found

    Phase transitions and crossovers in reaction-diffusion models with catalyst deactivation

    Full text link
    The activity of catalytic materials is reduced during operation by several mechanisms, one of them being poisoning of catalytic sites by chemisorbed impurities or products. Here we study the effects of poisoning in two reaction-diffusion models in one-dimensional lattices with randomly distributed catalytic sites. Unimolecular and bimolecular single-species reactions are considered, without reactant input during the operation. The models show transitions between a phase with continuous decay of reactant concentration and a phase with asymptotic non-zero reactant concentration and complete poisoning of the catalyst. The transition boundary depends on the initial reactant and catalyst concentrations and on the poisoning probability. The critical system behaves as in the two-species annihilation reaction, with reactant concentration decaying as t^{-1/4} and the catalytic sites playing the role of the second species. In the unimolecular reaction, a significant crossover to the asymptotic scaling is observed even when one of those parameters is 10% far from criticality. Consequently, an effective power-law decay of concentration may persist up to long times and lead to an apparent change in the reaction kinetics. In the bimolecular single-species reaction, the critical scaling is followed by a two-dimensional rapid decay, thus two crossovers are found.Comment: 8 pages, 7 figure

    Avaliação de genótipos de trigo e de outros cereais de inverno ao crestamento, em solo com e sem aplicação de calcário.

    Get PDF
    bitstream/CNPT-2010/40694/1/p-do76.pd

    Toward Emotion Recognition From Physiological Signals in the Wild: Approaching the Methodological Issues in Real-Life Data Collection

    Get PDF
    Emotion, mood, and stress recognition (EMSR) has been studied in laboratory settings for decades. In particular, physiological signals are widely used to detect and classify affective states in lab conditions. However, physiological reactions to emotional stimuli have been found to differ in laboratory and natural settings. Thanks to recent technological progress (e.g., in wearables) the creation of EMSR systems for a large number of consumers during their everyday activities is increasingly possible. Therefore, datasets created in the wild are needed to insure the validity and the exploitability of EMSR models for real-life applications. In this paper, we initially present common techniques used in laboratory settings to induce emotions for the purpose of physiological dataset creation. Next, advantages and challenges of data collection in the wild are discussed. To assess the applicability of existing datasets to real-life applications, we propose a set of categories to guide and compare at a glance different methodologies used by researchers to collect such data. For this purpose, we also introduce a visual tool called Graphical Assessment of Real-life Application-Focused Emotional Dataset (GARAFED). In the last part of the paper, we apply the proposed tool to compare existing physiological datasets for EMSR in the wild and to show possible improvements and future directions of research. We wish for this paper and GARAFED to be used as guidelines for researchers and developers who aim at collecting affect-related data for real-life EMSR-based applications

    New method to study stochastic growth equations: a cellular automata perspective

    Full text link
    We introduce a new method based on cellular automata dynamics to study stochastic growth equations. The method defines an interface growth process which depends on height differences between neighbors. The growth rule assigns a probability pi(t)=ρp_{i}(t)=\rho exp[κΓi(t)][\kappa \Gamma_{i}(t)] for a site ii to receive one particle at a time tt and all the sites are updated simultaneously. Here ρ\rho and κ\kappa are two parameters and Γi(t)\Gamma_{i}(t) is a function which depends on height of the site ii and its neighbors. Its functional form is specified through discretization of the deterministic part of the growth equation associated to a given deposition process. In particular, we apply this method to study two linear equations - the Edwards-Wilkinson (EW) equation and the Mullins-Herring (MH) equation - and a non-linear one - the Kardar-Parisi-Zhang (KPZ) equation. Through simulations and statistical analysis of the height distributions of the profiles, we recover the values for roughening exponents, which confirm that the processes generated by the method are indeed in the universality classes of the original growth equations. In addition, a crossover from Random Deposition to the associated correlated regime is observed when the parameter κ\kappa is varied.Comment: 6 pages, 7 figure

    Controle de polifenóis em folhas jovens de mangueira Mangifera indica L. cultivadas in vitro.

    Get PDF
    Os programas de melhoramento genético de mangueira buscam principalmente a diversificação de cultivares comerciais, visando cultivares que sejam tolerantes ou resistentes às principais doenças e possuam características superiores à ?Tommy Atkins?, cultivar largamente cultivada e que ocupa o mercado. A biotecnologia possui ferramentas que podem ser de grande auxílio no melhoramento genético da mangueira. No entanto, a cultura de tecidos de espécies lenhosas, passa inicialmente pela dificuldade de desinfestação e controle de polifenóis dos materiais de partida a serem usados como explante. Dentre os antioxidantes usados, a cisteína tem apresentado resultados positivos no cultivo in vitro de embriões de manga.Edição dos Resumos do XVI Congresso Brasileiro de Floricultura e Plantas Ornamentais; III Congresso Brasileiro de Cultura de Tecidos e Plantas; I Simpósio de Plantas Ornamentais Nativas, Goiânia, set. 2007

    Monitoramento da bicheira-da-raiz em áreas de arroz com utilização de sementes tratadas e não tratadas com inseticida.

    Get PDF
    bitstream/item/112073/1/ID-16759-circular-138.pd
    corecore