114 research outputs found

    Heliocentric Distance Dependence of Zodiacal Light Observed by Hayabusa2#

    Full text link
    Zodiacal light (ZL) is sunlight scattered by interplanetary dust particles (IDPs) at optical wavelengths. The spatial distribution of IDPs in the Solar System may hold an important key to understanding the evolution of the Solar System and material transportation within it. The number density of IDPs can be expressed as n(r)rαn(r) \sim r^{-\alpha}, and the exponent α1.3\alpha \sim 1.3 was obtained by previous observations from interplanetary space by Helios 1/2 and Pioneer 10/11 in the 1970s and 1980s. However, no direct measurements of α\alpha based on ZL observations from interplanetary space outside Earth's orbit have been performed since then. Here, we introduce initial results for the radial profile of the ZL at optical wavelengths observed over the range 0.76-1.06 au by ONC-T aboard the Hayabusa2# mission in 2021-2022. The ZL brightness we obtained is well reproduced by a model brightness, although there is a small excess of the observed ZL brightness over the model brightness at around 0.9 au. The radial power-law index we obtained is α=1.30±0.08\alpha = 1.30 \pm 0.08, which is consistent with previous results based on ZL observations. The dominant source of uncertainty arises from the uncertainty in estimating the diffuse Galactic light (DGL).Comment: 22 pages, 19 figures, 4 tables, accepted for publication by Earth, Planets and Spac

    Carotid artery calcification at the initiation of hemodialysis is a risk factor for cardiovascular events in patients with end-stage renal disease: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular calcification has been recognized as a risk factor for cardiovascular (CV) events in patients with end-stage renal disease (ESRD). However, the association of carotid artery calcification (CAAC) with CV events remains unknown. The aim of this study was to elucidate whether CAAC is associated with composite CV events in ESRD patients.</p> <p>Methods</p> <p>One-hundred thirty-three patients who had been started on hemodialysis between 2004 and 2008 were included in this retrospective cohort study. These patients received multi-detector computed tomography to assess CAAC at the initiation of hemodialysis. Composite CV events, including ischemic heart disease, heart failure, cerebrovascular diseases, and CV deaths after the initiation of hemodialysis, were examined in each patient.</p> <p>Results</p> <p>CAAC was found in 94 patients (71%). At the end of follow-up, composite CV events were seen in 47 patients: ischemic heart disease in 20, heart failure in 8, cerebrovascular disease in 12, and CV deaths in 7. The incidence of CAAC was 87% in patients with CV events, which was significantly higher than the rate (62%) in those without. Kaplan-Meier analysis showed a significant increase in composite CV events in patients with CAAC compared with those without CAAC (p = 0.001, log-rank test). Univariate analysis using a Cox hazards model showed that age, smoking, common carotid artery intima-media thickness and CAAC were risk factors for composite CV events. In multivariate analysis, only CAAC was a significant risk factor for composite CV events (hazard ratio, 2.85; 95% confidence interval, 1.18-8.00; p = 0.02).</p> <p>Conclusions</p> <p>CAAC is an independent risk factor for CV events in ESRD patients. The assessment of CAAC at the initiation of hemodialysis is useful for predicting the prognosis.</p

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov-Gerasimenko inferred from in-situ observations

    Get PDF
    Alteration processes on asteroid and comet surfaces, such as thermal fracturing, (micrometeorite) impacts or volatile outgassing, are complex mechanisms that form diverse surface morphologies and roughness on various scales. These mechanisms and their interaction may differ on the surfaces of different bodies. Asteroid Ryugu and comet 67P/Churyumov–Gerasimenko, both, have been visited by landers that imaged the surfaces in high spatial resolution. We investigate the surface morphology and roughness of Ryugu and 67P/Churyumov–Gerasimenko based on high-resolution in situ images of 0.2 and 0.8 mm pixel resolution over an approximately 25 and 80 cm wide scene, respectively. To maintain comparability and reproducibility, we introduce a method to extract surface roughness descriptors (fractal dimension, Hurst exponent, joint roughness coefficient, root-mean-square slope, hemispherical crater density, small-scale roughness parameter, and Hapke mean slope angle) from in situ planetary images illuminated by LEDs. We validate our method and choose adequate parameters for an analysis of the roughness of the surfaces. We also derive the roughness descriptors from 3D shape models of Ryugu and orbiter camera images and show that the higher spatially resolved images result in a higher roughness. We find that 67P/Churyumov–Gerasimenko is up to 6 per cent rougher than Ryugu depending on the descriptor used and attribute this difference to the different intrinsic properties of the materials imaged and the erosive processes altering them. On 67P/Churyumov–Gerasimenko sublimation appears to be the main cause for roughness, while on Ryugu micrometeoroid bombardment as well as thermal fatigue and solar weathering may play a significant role in shaping the surface
    corecore