73 research outputs found
Assessment of sub-seasonal forecast skill over the Northern Hemisphere in operational ensemble forecasts
The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc
Verification of global numerical weather forecasting systems in polar regions using TIGGE data
High-latitude climate change is expected to increase the demand for reliable weather and
environmental forecasts in polar regions. In this study, a quantitative assessment of the
skill of state-of-the-art global weather prediction systems in polar regions is given using
data from the THORPEX Interactive Grand Global Ensemble (TIGGE) for the period
2006/2007 – 2012/2013. Forecast skill in the Arctic is comparable to that found in the North-
ern Hemisphere midlatitudes. However, relative differences in the quality between different
forecasting systems appear to be amplified in the Arctic. Furthermore, analysis uncertainty
in the Arctic is more of an issue than it is in the midlatitudes, especially when it comes
to near-surface parameters over snow- and ice-covered surfaces. Using NOAA’s reforecast
dataset, it is shown that the changes in forecast skill during the 7-year period considered
here can largely be explained by flow-dependent error growth, especially for the more skilful
forecasting systems. Finally, a direct comparison between the Arctic and Antarctic suggests
that predictions of mid-topospheric flow in the former region are more skilful
Medium‐Range Forecast Skill for Extraordinary Arctic Cyclones in Summer of 2008–2016
Arctic cyclones (ACs) are a severe atmospheric phenomenon that affects the Arctic environment. This study assesses the forecast skill of five leading operational medium‐range ensemble forecasts for 10 extraordinary ACs that occurred in summer during 2008–2016. Average existence probability of the predicted ACs was >0.9 at lead times of ≤3.5 days. Average central position error of the predicted ACs was less than half of the mean radius of the 10 ACs (469.1 km) at lead times of 2.5–4.5 days. Average central pressure error of the predicted ACs was 5.5–10.7 hPa at such lead times. Therefore, the operational ensemble prediction systems generally predict the position of ACs within 469.1 km 2.5–4.5 days before they mature. The forecast skill for the extraordinary ACs is lower than that for midlatitude cyclones in the Northern Hemisphere but similar to that in the Southern Hemisphere
Predictability of an Atmospheric Blocking Event that Occurred on 15 December 2005
Atmospheric blocking occurred over the Rocky Mountains at 1200 UTC 15 December 2005. The operational medium-range ensemble forecasts of the Canadian Meteorological Center (CMC), the Japan Meteorological Agency (JMA), and the National Centers for Environmental Prediction (NCEP), as initialized at 1200 UTC 10 December 2005, showed remarkable differences regarding this event. All of the NCEP members failed to predict the correct location of the blocking, whereas almost all of the JMA members and most of the CMC members were successful in predicting the correct location. The present study investigated the factors that caused NCEP to incorrectly predict the blocking location, based on an ensemble-based sensitivity analysis and the JMA global spectral model (GSM) multianalysis ensemble forecasts with NCEP, regionally amplified NCEP, and globally amplified NCEP analyses.A sensitive area for the blocking formation was detected over the central North Pacific. In this area, the NCEP control analysis experienced problems in the handling of a cutoff cyclone, and the NCEP initial perturbations were ineffective in reducing uncertainties in the NCEP control analysis. The JMA GSM multianalysis ensemble forecasts revealed that regional amplification of initial perturbations over the sensitive area could lead to further improvements in forecasts over the blocking region without degradation of forecasts over the Northern Hemisphere (NH), whereas the global amplification of initial perturbations could lead to improved forecasts over the blocking region and degraded forecasts over the NH. This finding may suggest that excessive amplification of initial perturbations over nonsensitive areas is undesirable, and that case-dependent rescaling of initial perturbations may be of value compared with climatology-based rescaling, which is widely used in current operational ensemble prediction systems
Recommended from our members
The TIGGE project and its achievements
TIGGE was a major component of the THORPEX (The Observing System Research and Predictability Experiment) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics.
The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a Multi-model Grand Ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed.
TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world, and are a focus of multi-model ensemble research. Their extra-tropical transition also has a major impact on skill of mid-latitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extra-tropical cyclones and storm tracks.
Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles.
Finally the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill
Recommended from our members
The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro/Atlantic blocking is simulated overall more credibly at higher resolution, i.e. in better agreement with a 50-year reference blocking climatology created from the ERA-40 and ERA-Interim reanalyses. The improvement seen with resolution depends on the season and to some extent on the model considered. Euro/Atlantic blocking is simulated more realistically at higher resolution in winter, spring and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro/Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models’ mid-latitude circulation
Recommended from our members
Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution
This study undertakes a multi-model comparison with the aim to describe and quantify systematic changes of the global energy and water budgets when the horizontal resolution of atmospheric models is increased and to identify common factors of these changes among models. To do so, we analyse an ensemble of twelve atmosphere-only and six coupled GCMs, with different model formulations and with resolutions spanning those of state-of-the-art coupled GCMs, i.e. from resolutions coarser than 100 km to resolutions finer than 25 km. The main changes in the global energy budget with resolution are a systematic increase in outgoing longwave radiation and decrease in outgoing shortwave radiation due to changes in cloud properties, and a systematic increase in surface latent heat flux; when resolution is increased from 100 to 25 km, the magnitude of the change of those fluxes can be as large as 5 W m−2. Moreover, all but one atmosphere-only model simulate a decrease of the poleward energy transport at higher resolution, mainly explained by a reduction of the equator-to-pole tropospheric temperature gradient. Regarding hydrological processes, our results are the following: (1) there is an increase of global precipitation with increasing resolution in all models (up to 40 × 103 km3 year−1) but the partitioning between land and ocean varies among models; (2) the fraction of total precipitation that falls on land is on average 10% larger at higher resolution in grid point models, but it is smaller at higher resolution in spectral models; (3) grid points models simulate an increase of the fraction of land precipitation due to moisture convergence twice as large as in spectral models; (4) grid point models, which have a better resolved orography, show an increase of orographic precipitation of up to 13 × 103 km3 year−1 which explains most of the change in land precipitation; (5) at the regional scale, precipitation pattern and amplitude are improved with increased resolution due to a better simulated seasonal mean circulation. We discuss our results against several observational estimates of the Earth's energy budget and hydrological cycle and show that they support recent high estimates of global precipitation
- …