17,772 research outputs found
Remote Inflation: Hybrid-like inflation without hybrid-type potential
A new scenario of hybrid-like inflation is considered without using
hybrid-type potential. Radiation raised continuously by a dissipating inflaton
field keeps symmetry restoration in a remote sector, and the false-vacuum
energy of the remote sector dominates the energy density during inflation.
Remote inflation is terminated when the temperature reaches the critical
temperature, or when the slow-roll condition is violated. Without introducing a
complex form of couplings, inflaton field may either roll-in (like a standard
hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential
inflation) on arbitrary inflaton potential. Significant signatures of remote
inflation can be observed in the spectrum caused by (1) the inhomogeneous phase
transition in the remote sector, or (2) a successive phase transition in the
remote sector. Remote inflation can predict strong amplification or suppression
of small-scale perturbations without introducing multiple inflation. Since the
inflaton may have a run-away potential, it is also possible to identify the
inflaton with quintessence, without introducing additional mechanisms. Even if
the false-vacuum energy is not dominated by the remote sector, the phase
transition in the remote sector is possible during warm inflation, which may
cause significant amplification/suppression of the curvature perturbations.Comment: 28 pages, 1 figure, fixed references, accepted for publication in
JCA
Running spectral index from shooting-star moduli
We construct an inflationary model that is consistent with both large
non-Gaussianity and a running spectral index. The scenario of modulated
inflation suggests that modulated perturbation can induce the curvature
perturbation with a large non-Gaussianity, even if the inflaton perturbation is
negligible. Using this idea, we consider a multi-field extension of the
modulated inflation scenario and examine the specific situation where different
moduli are responsible for the perturbation at different scales. We suppose
that the additional moduli (shooting-star moduli) is responsible for the
curvature perturbation at the earlier inflationary epoch and it generates the
fluctuation with n>1 spectral index at this scale. After a while, another
moduli (or inflaton) takes the place and generates the perturbation with n<1.
At the transition point the two fluctuations are comparable with each other. We
show how the spectral index is affected by the transition induced by the
shooting-star moduli.Comment: 14 pages, latex, accepted for publication in JHE
Brane inflation without slow-roll
The scenario of brane inflation without using the conventional slow-roll
approximations has been investigated. Based on the mechanism of generating the
curvature perturbations at the end of inflation, a new brane inflation paradigm
was developed. The conditions for making a sufficiently large enough number of
e-foldings and for generating the curvature perturbations without producing
dangerous relics were also examined. Benefits of our scenario are subsequently
discussed in detail.Comment: 21 pages, 2 figures, added an appendix, accepted for publication in
JHE
Generating the curvature perturbation with instant preheating
A new mechanism for generating the curvature perturbation at the end of
inflaton has been investigated. The dominant contribution to the primordial
curvature perturbation may be generated during the period of instant
preheating. The mechanism converts isocurvature perturbation related to a light
field into curvature perturbation, where the ``light field'' is not the
inflaton field. This mechanism is important in inflationary models where
kinetic energy is significant at the end of inflaton. We show how one can apply
this mechanism to various brane inflationary models.Comment: 17 pages, 1 figure, To appear in JCA
String production after angled brane inflation
We describe string production after angled brane inflation. First, we point
out that there was a discrepancy in previous discussions. The expected tension
of the cosmic string calculated from the four-dimensional effective Lagrangian
did not match the one obtained in the brane analysis. In the previous analysis,
the cosmic string is assumed to correspond to the lower-dimensional daughter
brane, which wraps the same compactified space as the original mother brane. In
this case, however, the tension of the daughter brane cannot depend on the
angle (\theta). On the other hand, from the analysis of the effective
Lagrangian for tachyon condensation, it is easy to see that the tension of the
cosmic string must be proportional to \theta, when \theta << 1. This is an
obvious discrepancy that must be explained by consideration of the explicit
brane dynamics. In this paper, we will solve this problem by introducing a
simple idea. We calculate the tension of the string in the two cases, which
matches precisely. The cosmological constraint for angled inflation is relaxed,
because the expected tension of the cosmic string becomes smaller than the one
obtained in previous arguments, by a factor of \theta.Comment: 13pages, 3 figures, typos correcte
Primordial black holes from cosmic necklaces
Cosmic necklaces are hybrid topological defects consisting of monopoles and
strings. We argue that primordial black holes(PBHs) may have formed from loops
of the necklaces, if there exist stable winding states, such as coils and
cycloops. Unlike the standard scenario of PBH formation from string loops, in
which the kinetic energy plays important role when strings collapse into black
holes, the PBH formation may occur in our scenario after necklaces have
dissipated their kinetic energy. Then, the significant difference appears in
the production ratio. In the standard scenario, the production ratio
becomes a tiny fraction , however it becomes in our
case. On the other hand, the typical mass of the PBHs is much smaller than the
standard scenario, if they are produced in the same epoch. As the two
mechanisms may work at the same time, the necklaces may have more than one
channel of the gravitational collapse. Although the result obtained in this
paper depends on the evolution of the dimensionless parameter , the
existence of the winding state could be a serious problem in some cases. Since
the existence of the winding state in brane models is due to the existence of a
non-tivial circle in the compactified space, the PBH formation can be used to
probe the structure of the compactified space. Black holes produced by this
mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for
publication in JHE
Q ball inflation
We show that inflation can occur in the core of a Q-ball.Comment: 11 pages, latex2e, no figure, references added, final version to
appear in PR
Elliptic Inflation: Generating the curvature perturbation without slow-roll
There are many inflationary models in which inflaton field does not satisfy
the slow-roll condition. However, in such models, it is always difficult to
generate the curvature perturbation during inflation. Thus, to generate the
curvature perturbation, one must introduce another component to the theory. To
cite a case, curvatons may generate dominant part of the curvature perturbation
after inflation. However, we have a question whether it is unrealistic to
consider the generation of the curvature perturbation during inflation without
slow-roll. Assuming multi-field inflation, we encounter the generation of the
curvature perturbation during inflation without slow-roll. The potential along
equipotential surface is flat by definition and thus we do not have to worry
about symmetry. We also discuss about KKLT models, in which corrections lifting
the inflationary direction may not become a serious problem if there is a
symmetry enhancement at the tip (not at the moving brane) of the inflationary
throat.Comment: 27pages, 8figures, to appear in JCA
Evolution of the curvature perturbations during warm inflation
This paper considers warm inflation as an interesting application of
multi-field inflation. Delta-N formalism is used for the calculation of the
evolution of the curvature perturbations during warm inflation. Although the
perturbations considered in this paper are decaying after the horizon exit, the
corrections to the curvature perturbations sourced by these perturbations can
remain and dominate the curvature perturbations at large scales. In addition to
the typical evolution of the curvature perturbations, inhomogeneous diffusion
rate is considered for warm inflation, which may lead to significant
non-Gaussianity of the spectrum.Comment: 23 pages, 1 figure, fixed references, accepted for publication in
JCA
Curvaton paradigm can accommodate multiple low inflation scales
Recent arguments show that some curvaton field may generate the cosmological
curvature perturbation. As the curvaton is independent of the inflaton field,
there is a hope that the fine-tunings of inflation models can be cured by the
curvaton scenario. More recently, however, D.H.Lyth discussed that there is a
strong bound for the Hubble parameter during inflation even if one assumes the
curvaton scenario. Although the most serious constraint was evaded, the bound
seems rather crucial for many models of a low inflation scale. In this paper we
try to remove this constraint. We show that the bound is drastically modified
if there were multiple stages of inflation.Comment: 9pages, no figure, references added, final versio
- …