5,521 research outputs found

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    Generation of Closed Timelike Curves with Rotating Superconductors

    Get PDF
    The spacetime metric around a rotating SuperConductive Ring (SCR) is deduced from the gravitomagnetic London moment in rotating superconductors. It is shown that theoretically it is possible to generate Closed Timelike Curves (CTC) with rotating SCRs. The possibility to use these CTC's to travel in time as initially idealized by G\"{o}del is investigated. It is shown however, that from a technology and experimental point of view these ideas are impossible to implement in the present context.Comment: 9 pages. Submitted to Classical and Quantum Gravit

    Scalar-Tensor theories from Λ(ϕ)\Lambda(\phi) Plebanski gravity

    Full text link
    We study a modification of the Plebanski action, which generically corresponds to a bi-metric theory of gravity, and identify a subclass which is equivalent to the Bergmann-Wagoner-Nordtvedt class of scalar-tensor theories. In this manner, scalar-tensor theories are displayed as constrained BF theories. We find that in this subclass, there is no need to impose reality of the Urbantke metrics, as also the theory with real bivectors is a scalar-tensor theory with a real Lorentzian metric. Furthermore, while under the former reality conditions instabilities can arise from a wrong sign of the scalar mode kinetic term, we show that such problems do not appear if the bivectors are required to be real. Finally, we discuss how matter can be coupled to these theories. The phenomenology of scalar field dark matter arises naturally within this framework.Comment: 21 page

    Spherical Scalar Field Halo in Galaxies

    Get PDF
    We study a spherically symmetric fluctuation of scalar dark matter in the cosmos and show that it could be the dark matter in galaxies, provided that the scalar field has an exponential potential whose overall sign is negative and whose exponent is constrained observationally by the rotation velocities of galaxies. The local space-time of the fluctuation contains a three dimensional space-like hypersurface with surplus of angle.Comment: 5 REVTeX pages, no figures. Contains important suggestions provided by the referee. Final version, to appear in Phys. Rev.

    Quantum-state synthesis of multi-mode bosonic fields: Preparation of arbitrary states of 2-D vibrational motion of trapped ions

    Get PDF
    We present a universal algorithm for an efficient deterministic preparation of an arbitrary two--mode bosonic state. In particular, we discuss in detail preparation of entangled states of a two-dimensional vibrational motion of a trapped ion via a sequence of laser stimulated Raman transitions. Our formalism can be generalized for multi-mode bosonic fields. We examine stability of our algorithm with respect to a technical noise.Comment: 8 pages, revtex, including 2 ps-figures, section about physical implementation added, references updated, submitted to Phys. Rev. A, computer program available at http://www.savba.sk/sav/inst/fyzi/qo

    Electromagnetic Pulse Driven Spin-dependent Currents in Semiconductor Quantum Rings

    Full text link
    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nano-meter rings fabricated in heterojuctions of III-V and II-VI semiconductors containing several hundreds electrons.Comment: 15pages, 5 figure

    Quantum signatures of chaos in the dynamics of a trapped ion

    Get PDF
    We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realised in the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing wave pulses. Unlike the original optical scheme [G.J.Milburn and C.A.Holmes, Phys. Rev A, 44, p4704, (1991)], the trapped ion enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one of the quantum signatures of chaos; irregular collapse and revival dynamics of the average vibrational energy.Comment: 9 pages, 9 Postscript figures, Revtex, submitted to Phys. Rev.

    24^{24}Mg(pp, α\alpha)21^{21}Na reaction study for spectroscopy of 21^{21}Na

    Full text link
    The 24^{24}Mg(pp, α\alpha)21^{21}Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in 21^{21}Na for the astrophysically important 17^{17}F(α,p\alpha, p)20^{20}Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched 24^{24}Mg solid targets were used. Recoiling 4^{4}He particles from the 24^{24}Mg(pp, α\alpha)21^{21}Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4^{4}He particles over a range of angles simultaneously. A new level at 6661 ±\pm 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21^{21}Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference on Accelerators and Beam Utilization (ICABU2014

    Determination of entangled quantum states of a trapped atom

    Get PDF
    We propose a method for measuring entangled vibronic quantum states of a trapped atom. It is based on the nonlinear dynamics of the system that appears by resonantly driving a weak electronic transition. The proposed technique allows the direct sampling of a Wigner-function matrix, displaying all knowable information on the quantum correlations of the motional and electronic degrees of freedom of the atom. It opens novel possibilities for testing fundamental predictions of the quantum theory concerning interaction phenomena.Comment: 7 pages, 3 figures, to be published in Phys. Rev. A 56 (Aug
    corecore