486 research outputs found
Day to Day Variability of Dynamic Knee Joint Stability in Healthy Individuals
The cause of osteoarthritis remains unknown; however abnormal joint mechanics are speculated to be an initiating factor [1]. Relating the Finite Helical Axis (FHA) to joint health may provide a means of predicting risk of joint degeneration [2]. To study dynamic knee joint stability using FHA and electromyography (EMG), it is valuable to quantify the day to day variance of these measures in a healthy population. It was hypothesized that there would be no statistically significant differences in FHA parameters or muscle patterns between days for healthy individuals. Three healthy females with intact anterior cruciate ligaments were recruited and tested 3 times during one week. Three-dimensional data for FHA determination was collected from reflective skin markers placed on each lower extremity (3 markers/segment) using an 8-camera (120 Hz) video motion capture system (Motion Analysis Corp.). A 16-channel EMG system recorded muscle activation patterns from 6 major muscles of the leg. Each subject performed two dynamic tasks: unconstrained knee flexion and extension while seated, and a single leg squat and rise. Data was analyzed using in house programs written in Matlab 7.1 (Mathworks Inc.). Four FHA parameters were described: location, translation, orientation and dispersion [2]. Muscle activity patterns were quantified using a wavelet analysis approach [3]. Due to the small sample size, a non-parametric Friedman’s test was used to detect differences in dynamic knee joint stability between days (p=0.05). Significant differences (p=0.028) were found for the extension phase of the squat in the contra lateral legs for location y, which describes the anterior/posterior location of the FHA in the knee. No significant differences were detected for any other FHA or EMG parameters. This finding suggests that the y location of the FHA during the extension phase of the squat task changes across days, and must be carefully interpreted in future studies
MRI-Based Knee Joint Laxity Measure in Healthy Individuals
A functional MRI based knee joint laxity device was developed by the current research group to enable three-dimensional (3D) evaluation of change in ligament length as a function of loading [1]. Previous studies have used the knee loading apparatus (KLA) to quantify knee joint laxity in the dominant leg of healthy individuals [1]; however anterior laxity of the knee is reported clinically as a left-right difference, and not absolute values [2]. Therefore, the purpose of this study was to quantify side-to-side differences in knee joint laxity using the KLA in a healthy population. It was hypothesized that there would be no statistically significant differences in knee joint laxity between legs for healthy individuals. One healthy female with an intact anterior cruciate ligament was recruited and tested 3 times during the span of 10 days. Magnetic Resonance (MR) imaging was used in conjunction with the KLA to obtain images of the knee joint geometry during an unloaded state and at an anterior load of 133 N. Sagittal images of the knee were manually digitized using SliceOmatic (Tomovision) to obtain 3D volumes of the femur and tibia. The displacement of the tibia at 133N was obtained from the 3D joint position of the femur relative to the tibia, specifically anterior displacement of the tibia [1]. Due to complications with data collection, results are only available for day 2 for the right leg, and days 1 and 3 for the left leg. The anterior displacement of the tibia under an anterior load of 133N was 1.29 mm for the right leg, and 0.62 ± 0.42 mm for the left leg. Due to the sample size of 1, statistical analysis was not performed. This is preliminary data; future studies will increase the number of subjects and collect data at multiple load levels
On the motion of a classical charged particle
We show that the Lorentz-Dirac equation is not an unavoidable consequence of
energy-momentum conservation for a point charge. What follows solely from
conservation laws is a less restrictive equation already obtained by Honig and
Szamosi. The latter is not properly an equation of motion because, as it
contains an extra scalar variable, it does not determine the future evolution
of the charge. We show that a supplementary constitutive relation can be added
so that the motion is determined and free from the troubles that are customary
in Lorentz-Dirac equation, i. e. preacceleration and runaways
Post COP26: does the 1.5°C climate target remain alive?
One of the COP26 aims was to keep 1.5°C within reach by asking countries to come forward with ambitious year 2030 emission reductions targets to further pursue the necessary action to meet the Paris climate targets. We assess the mean global temperature rise given the updated year 2030 emission pledges in the context of future emission pathways considered by the international scientific community. Overall, we find current pledges are not consistent with a likely meeting of 1.5°C this century without overshoot. Meeting the 1.5°C goal in 2100 post overshoot given the pledges remains feasible, but urgent action is required to ensure pledges are met and policies are in place for the very deep and rapid emission reductions that are required post 2030
Lars Hætta’s miniature world: Sámi prison op-art autoethnography
This article examines a collection of miniature objects, now held in museum collections, which were originally made by a Sámi political prisoner in Norway during the mid-19th century as part of an educational programme. The author draws on recent developments in the theory of miniaturization to consider these miniatures as examples of prison op-art autoethnography: communicative devices which seek to address broad and complex social issues through the process of the creation and distribution of semiophorically functionless mimetic objects of reduced scale and complexity, and which reflect the restrictions of incarcerated artistic expression and the questions this raises regarding authenticity and hybridity
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Global studies of climate change impacts that use future
climate model projections also require projections of land surface changes.
Simulated land surface performance in Earth system models is often affected
by the atmospheric models' climate biases, leading to errors in land surface projections. Here we run the Joint UK Land Environment Simulator Earth System configuration (JULES-ES) land surface model with the Inter-Sectoral Impact Model Intercomparison Project second-phase future projections (ISIMIP2b) bias-corrected climate model data from four global climate models (GCMs). The bias correction reduces the impact of the climate biases present in individual models. We evaluate the performance of JULES-ES against present-day observations to demonstrate its usefulness for providing required information for impacts such as fire and river flow. We include a standard JULES-ES configuration without fire as a contribution to ISIMIP2b and JULES-ES with fire as a potential future development. Simulations for gross primary productivity (GPP), evapotranspiration (ET) and albedo compare well against observations. Including fire improves the simulations, especially for ET and albedo and vegetation distribution, with some degradation in shrub cover and river flow. This configuration represents some of the most current Earth system science for land surface modelling. The suite associated with this configuration provides a basis for past and future phases of ISIMIP, providing a simulation set-up, postprocessing and initial evaluation, using the International Land Model Benchmarking (ILAMB) project. This suite ensures that it is as straightforward, reproducible and transparent as possible to follow the protocols and participate fully in ISIMIP using JULES.</p
NF-κB-inducing kinase regulates selected gene expression in the Nod2 signaling pathway
The innate immune system surveys the extra- and intracellular environment for the presence of microbes. Among the intracellular sensors is a protein known as Nod2, a cytosolic protein containing a leucine-rich repeat domain. Nod2 is believed to play a role in determining host responses to invasive bacteria. A key element in upregulating host defense involves activation of the NF-κB pathway. It has been suggested through indirect studies that NF-κB-inducing kinase, or NIK, may be involved in Nod2 signaling. Here we have used macrophages derived from primary explants of bone marrow from wild-type mice and mice that either bear a mutation in NIK, rendering it inactive, or are derived from NIK(−/−) mice, in which the NIK gene has been deleted. We show that NIK binds to Nod2 and mediates induction of specific changes induced by the specific Nod2 activator, muramyl dipeptide, and that the role of NIK occurs in settings where both the Nod2 and TLR4 pathways are activated by their respective agonists. Specifically, we have linked NIK to the induction of the B-cell chemoattractant known as BLC and suggest that this chemokine may play a role in processes initiated by Nod2 activation that lead to improved host defense
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
Effects of Subnormothermic Regulated Hepatic Reperfusion on Mitochondrial and Transcriptomic Profiles in a Porcine Model
OBJECTIVE: We sought to investigate the biological effects of pre-reperfusion treatments of the liver after warm and cold ischemic injuries in a porcine donation after circulatory death model.
SUMMARY OF BACKGROUND DATA: Donation after circulatory death represents a severe form of liver ischemia and reperfusion injury that has a profound impact on graft function after liver transplantation.
METHODS: Twenty donor pig livers underwent 60 minutes of in situ warm ischemia after circulatory arrest and 120 minutes of cold static preservation prior to simulated transplantation using an ex vivo perfusion machine. Four reperfusion treatments were compared: Control-Normothermic (N), Control- Subnormothermic (S), regulated hepatic reperfusion (RHR)-N, and RHR-S (n = 5 each). The biochemical, metabolic, and transcriptomic profiles, as well as mitochondrial function were analyzed.
RESULTS: Compared to the other groups, RHR-S treated group showed significantly lower post-reperfusion aspartate aminotransferase levels in the reperfusion effluent and histologic findings of hepatocyte viability and lesser degree of congestion and necrosis. RHR-S resulted in a significantly higher mitochondrial respiratory control index and calcium retention capacity. Transcriptomic profile analysis showed that treatment with RHR-S activated cell survival and viability, cellular homeostasis as well as other biological functions involved in tissue repair such as cytoskeleton or cytoplasm organization, cell migration, transcription, and microtubule dynamics. Furthermore, RHR-S inhibited organismal death, morbidity and mortality, necrosis, and apoptosis.
CONCLUSION: Subnormothermic RHR mitigates IRI and preserves hepatic mitochondrial function after warm and cold hepatic ischemia. This organ resuscitative therapy may also trigger the activation of protective genes against IRI. Sub- normothermic RHR has potential applicability to clinical liver transplantation
- …