13 research outputs found
The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization
A light collective theta+ baryon state (with strangeness +1) was predicted
via rigid-rotor collective quantization of SU(3) chiral soliton models. This
paper explores the validity of this treatment. A number of rather general
analyses suggest that predictions of exotic baryon properties based on this
approximation do not follow from large Nc QCD. These include an analysis of the
baryon's width, a comparison of the predictions with general large Nc
consistency conditions of the Gervais-Sakita-Dashen-Manohar type; an
application of the technique to QCD in the limit where the quarks are heavy; a
comparison of this method with the vibration approach of Callan and Klebanov;
and the 1/Nc scaling of the excitation energy. It is suggested that the origin
of the problem lies in an implicit assumption in the that the collective motion
is orthogonal to vibrational motion. While true for non-exotic motion, the
Wess-Zumino term induces mixing at leading order between collective and
vibrational motion with exotic quantum numbers. This suggests that successful
phenomenological predictions of theta+ properties based on rigid-rotor
quantization were accidental.Comment: 19 pages; A shorter more readable versio