41 research outputs found

    Dog ownership, dog behaviour and transmission of Echinococcus spp. in the Alay Valley, southern Kyrgyzstan

    Get PDF
    Echinococcosis is a re-emerging zoonotic disease in Kyrgyzstan, and the incidence of human infection has increased substantially since the collapse of the Soviet Union in 1991. Domestic dogs are hosts of Echinococcus spp. and play an important role in the transmission of these parasites. The demography, ecology and behaviour of dogs are therefore relevant in studying Echinococcus spp. transmission. Dog demographics, roles of dogs, dog movements and faecal environmental contamination were assessed in four rural communities in the Alay Valley, southern Kyrgyzstan. Arecoline purge data revealed for the first time that E. granulosus, E. canadensis and E. multilocularis were present in domestic dogs in the Alay Valley. Surveys revealed that many households had dogs and that dogs played various roles in the communities, as pets, guard dogs or sheep dogs. Almost all dogs were free to roam, and GPS data revealed that many moved outside their communities, thus being able to scavenge offal and consume rodents. Faecal environmental contamination was high, presenting a significant infection risk to the local communitie

    Independent evaluation of a canine Echinococcosis control programme in Hobukesar County, Xinjiang, China

    Get PDF
    The Xinjiang Uyghur Autonomous Region in northwest China is one of the world's most important foci for cystic echinococcosis. Domestic dogs are the main source for human infection, and previous studies in Xinjiang have found a canine Echinococcus spp. coproELISA prevalence of between 36% and 41%. In 2010 the Chinese National Echinococcosis Control Programme was implemented in Xinjiang, and includes regular dosing of domestic dogs with praziquantel. Six communities in Hobukesar County, northwest Xinjiang were assessed in relation to the impact of this control programme through dog necropsies, dog Echinococcus spp. coproantigen surveys based on Lot Quality Assurance Sampling (LQAS) and dog owner questionnaires. We found that 42.1% of necropsied dogs were infected with Echinococcus granulosus, and coproELISA prevalences were between 15% and 70% in the communities. Although approximately half of all dog owners reported dosing their dogs within the 12 months prior to sampling, coproELISA prevalence remained high. Regular praziquantel dosing of owned dogs in remote and semi-nomadic communities such as those in Hobukesar County is logistically very difficult and additional measures should be considered to reduce canine echinococcosis

    Echinococcus granulosus : epidemiology and state-of-the-art of diagnostics in animals

    Get PDF
    Diagnosis and detection of Echinococcus granulosus (sensu lato) infection in animals is a prerequisite for epidemiological studies and surveillance of echinococcosis in endemic, re-emergent or emergent transmission zones. Advances in diagnostic approaches for definitive hosts and livestock, however, have not progressed equally over the last 20 years. Development of laboratory based diagnostics for canids using coproantigen ELISA and also coproPCR, have had a huge impact on epidemiological studies and more recently on surveillance during hydatid control programmes. In contrast, diagnosis of cystic echinococcosis (CE) in livestock still relies largely on conventional post-mortem inspection, despite a relatively low diagnostic sensitivity especially in early infections, as current serodiagnostics do not provide a sufficiently specific and sensitive practical pre-mortem alternative. As a result, testing of dog faecal samples by coproantigen ELISA, often combined with mass ultrasound screening programmes for human CE, has been the preferred approach for monitoring and surveillance in resource-poor endemic areas and during control schemes. In this article we review the current options and approaches for diagnosis of E. granulosus infection in definitive and animal intermediate hosts (including applications in non-domesticated species) and make conclusions and recommendations for further improvements in diagnosis for use in epidemiological studies and surveillance schemes

    A method of determining where to target surveillance efforts in heterogeneous epidemiological systems

    Get PDF
    The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question—including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between ‘hosts’ and ‘vectors’—with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled

    Detailed Analysis of Near Tectonic Features Along the East Pacific Rise at 16°N, Near the Mathematician Hot Spot

    Get PDF
    Spreading processes at the axes of fast spreading ridges are mainly controlled by magmatic activity, whereas tectonic activity dominates further away from the axis. High-resolution near-bottom bathymetry data, photographs, videos, and human observations from submersible surveys are used to develop a detailed tectonic analysis of the 16°N segment of the East Pacific Rise (EPR). These data are used to evaluate how a highly magmatic segment, close to a hot spot, affects the nucleation and evolution of faulting patterns and impacts the evaluation of tectonic strain within 2 km of the spreading axis. Our study shows that (1) the growth of tectonic features differs in response to dike intrusion and tectonic extension, (2) the initiation of brittle extension is strongly controlled by the location of the axial magma lens and the development of layer 2A, and (3) the high magmatic budget and the off-axis magma lens in the west part of the plateau do not significantly impact the initiation of brittle extension along the central portion of the 16°N segment. Within the axial summit region, more than 2% of plate separation at 16°N on the EPR is accommodated by brittle extension, as is observed at other EPR segments. The interaction of the Mathematician hot spot with this EPR segment has no significant influence on the initiation of the tectonic deformation, but it does reduce the development of the brittle deformation

    Dog ownership, dog behaviour and transmission of Echinococcus spp. in the Alay Valley, southern Kyrgyzstan

    Get PDF
    Echinococcosis is a re-emerging zoonotic disease in Kyrgyzstan, and the incidence of human infection has increased substantially since the collapse of the Soviet Union in 1991. Domestic dogs are hosts of Echinococcus spp. and play an important role in the transmission of these parasites. The demography, ecology and behaviour of dogs are therefore relevant in studying Echinococcus spp. transmission. Dog demographics, roles of dogs, dog movements and faecal environmental contamination were assessed in four rural communities in the Alay Valley, southern Kyrgyzstan. Arecoline purge data revealed for the first time that E. granulosus, E. canadensis and E. multilocularis were present in domestic dogs in the Alay Valley. Surveys revealed that many households had dogs and that dogs played various roles in the communities, as pets, guard dogs or sheep dogs. Almost all dogs were free to roam, and GPS data revealed that many moved outside their communities, thus being able to scavenge offal and consume rodents. Faecal environmental contamination was high, presenting a significant infection risk to the local communities

    Optimising risk-based surveillance for early detection of invasive plant pathogens.

    Get PDF
    Emerging infectious diseases (EIDs) of plants continue to devastate ecosystems and livelihoods worldwide. Effective management requires surveillance to detect epidemics at an early stage. However, despite the increasing use of risk-based surveillance programs in plant health, it remains unclear how best to target surveillance resources to achieve this. We combine a spatially explicit model of pathogen entry and spread with a statistical model of detection and use a stochastic optimisation routine to identify which arrangement of surveillance sites maximises the probability of detecting an invading epidemic. Our approach reveals that it is not always optimal to target the highest-risk sites and that the optimal strategy differs depending on not only patterns of pathogen entry and spread but also the choice of detection method. That is, we find that spatial correlation in risk can make it suboptimal to focus solely on the highest-risk sites, meaning that it is best to avoid 'putting all your eggs in one basket'. However, this depends on an interplay with other factors, such as the sensitivity of available detection methods. Using the economically important arboreal disease huanglongbing (HLB), we demonstrate how our approach leads to a significant performance gain and cost saving in comparison with conventional methods to targeted surveillance

    Effect of varying transmission parameters (<i>β</i>) on the suggested group of sampling for the HLB model (panel (a)) and the tristeza model (panel (b)).

    No full text
    <p>We estimate the relative sampling efforts required from vectors compared to that from hosts when using the current model parameters (located at the intersection of the dashed lines) using the ratio , and assume that the relative cost of sampling hosts compared to vectors is equal to this threshold (8 for HLB, 6 for Tristeza)—indicating the ‘equivalence point’ as described in the text. The numbers in the key on the right describe the relative vector sampling effort for different transmission rates, but the colour gradient relates to the ratio of the relative vector sampling effort to the relative host sampling cost , and is shown on the log scale in order to better discriminate values less than 1. Regions shown in red have a sampling effort ratio greater than the cost ratio (suggesting that sampling hosts would minimise the total cost) and those in blue have a ratio less than the cost ratio (suggesting that sampling vectors would minimise the total cost). The frontier between these two (indicating a ratio equal to the cost ratio) is shown in white.</p

    Effect of varying sampling effort on the mean prevalence at first detection for the HLB model (panels (a) and (b) and the tristeza model (panels (c) and (d).

    No full text
    <p>The estimated prevalence at first detection in hosts is shown in the graphs on the left, and that in vectors is shown in the graphs on the right. The dashed line indicates a host (vertical line) and a vector (horizontal line) sampling effort of 800 samples per 28 days, with the intersection of these dashed lines indicating a theoretical scenario in which a total of 800 hosts and 800 vectors were sampled.</p
    corecore