330 research outputs found

    New determination of abundances and stellar parameters for a set of weak G-band stars

    Full text link
    Weak G-band (wGb) stars are very peculiar red giants almost devoided of carbon and often mildly enriched in lithium. Despite their very puzzling abundance patterns, very few detailed spectroscopic studies existed up to a few years ago, preventing any clear understanding of the wGb phenomenon. We recently proposed the first consistent analysis of published data for 28 wGb stars and identified them as descendants of early A-type to late B-type stars, without being able to conclude on their evolutionary status or the origin of their peculiar abundance pattern. We used newly obtained high-resolution and high SNR spectra for 19 wGb stars in the southern and northern hemisphere to homogeneously derive their fundamental parameters, metallicities, as well as the spectroscopic abundances for Li, C, N, O, Na, Sr, and Ba. We also computed dedicated stellar evolution models that we used to determine the masses and to investigate the evolutionary status and chemical history of the stars in our sample. We confirm that the wGb stars are stars in the mass range 3.2 to 4.2 M_\odot. We suggest that a large fraction could be mildly evolved stars on the SGB currently undergoing the 1st DUP, while a smaller number of stars are more probably in the core He burning phase at the clump. After analysing their abundance pattern, we confirm their strong N enrichment anti-correlated with large C depletion, characteristic of material fully processed through the CNO cycle to an extent not known in other evolved intermediate-mass stars. However, we demonstrate here that such a pattern is very unlikely due to self-enrichment. In the light of the current observational constraints, no solid self-consistent pollution scenario can be presented either, leaving the wGb puzzle largely unsolved.Comment: 19 pages , 14 figures, accepted for publication in Astronomy & Astrophysic

    A holistic approach to carbon-enhanced metal-poor stars

    Full text link
    By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion.To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities, luminosity classes, and abundance patterns, from our own sample and from literature. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s- and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H]~< -3.2). This trend is not predicted by any of the current AGB models.Comment: 27 pages, 24 figures, accepted for publication in A&

    IP Eri: A surprising long-period binary system hosting a He white dwarf

    Full text link
    We determine the orbital elements for the K0 IV + white dwarf (WD) system IP Eri, which appears to have a surprisingly long period of 1071 d and a significant eccentricity of 0.25. Previous spectroscopic analyses of the WD, based on a distance of 101 pc inferred from its Hipparcos parallax, yielded a mass of only 0.43 M_\odot, implying it to be a helium-core WD. The orbital properties of IP Eri are similar to those of the newly discovered long-period subdwarf B star (sdB) binaries, which involve stars with He-burning cores surrounded by extremely thin H envelopes, and are therefore close relatives to He WDs. We performed a spectroscopic analysis of high-resolution spectra from the HERMES/Mercator spectrograph and concluded that the atmospheric parameters of the K0 component are Teff=4960T_{\rm eff} = 4960 K, logg=3.3\log{g} = 3.3, [Fe/H] = 0.09 and ξ=1.5\xi = 1.5 km/s. The detailed abundance analysis focuses on C, N, O abundances, carbon isotopic ratio, light (Na, Mg, Al, Si, Ca, Ti) and s-process (Sr, Y, Zr, Ba, La, Ce, Nd) elements. We conclude that IP Eri abundances agree with those of normal field stars of the same metallicity. The long period and non-null eccentricity indicate that this system cannot be the end product of a common-envelope phase; it calls instead for another less catastrophic binary-evolution channel presented in detail in a companion paper (Siess et al. 2014).Comment: 14 pages, 10 figures, 4 tables, accepted for publication in A&A (Update of Table 3, Fig. 8 and text in Sect. 5.1, 5.3 and 6 due to minor corrections on N and Y II

    Deductive synthesis of recursive plans in linear logic

    Get PDF
    Linear logic has previously been shown to be suitable for describing and deductively solving planning problems involving conjunction and disjunction. We introduce a recursively defined datatype and a corresponding induction rule, thereby allowing recursive plans to be synthesised. In order to make explicit the relationship between proofs and plans, we enhance the linear logic deduction rules to handle plans as a form of proof term

    Nitrogen depletion in field red giants: mixing during the He flash?

    Get PDF
    We combine simultaneous constraints on stellar evolutionary status from asteroseismology, and on nitrogen abundances derived from large spectroscopic surveys, to follow nitrogen surface abundances all along the evolution of a low-mass star, comparing model expectations with data. After testing and calibrating the observed yields from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, we first show that nitrogen surface abundances follow the expected trend after the first dredge-up occurred, i.e. that the more massive is the star, the more nitrogen is enhanced. Moreover, the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some nitrogen has been burnt near or at the He flash episode.This work was partly supported by the European Union FP7 programme through ERC grant number 320360. NL acknowledges financial support from the Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF) and the CNES postdoctoral fellowship 2016. AM and YE acknowledge the support of the UK Science and Technology Facilities Council (STFC). Funding for the Stellar Astrophysics Centre (SAC) is provided by The Danish National Research Foundation (Grant agreement no. DNRF106)

    Nitrogen depletion in field red giants: mixing during the He flash?

    Get PDF
    We combine simultaneous constraints on stellar evolutionary status from asteroseismology, and on nitrogen abundances derived from large spectroscopic surveys, to follow nitrogen surface abundances all along the evolution of a low-mass star, comparing model expectations with data. After testing and calibrating the observed yields from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey, we first show that nitrogen surface abundances follow the expected trend after the first dredge-up occurred, i.e. that the more massive is the star, the more nitrogen is enhanced. Moreover, the behaviour of nitrogen data along the evolution confirms the existence of non-canonical extramixing on the red giant branch (RGB) for all low-mass stars in the field. But more surprisingly, the data indicate that nitrogen has been depleted between the RGB tip and the red clump. This may suggest that some nitrogen has been burnt near or at the He flash episode.This work was partly supported by the European Union FP7 programme through ERC grant number 320360. NL acknowledges financial support from the Marie Curie Intra-European fellowship (FP7-PEOPLE-2012-IEF) and the CNES postdoctoral fellowship 2016. AM and YE acknowledge the support of the UK Science and Technology Facilities Council (STFC). Funding for the Stellar Astrophysics Centre (SAC) is provided by The Danish National Research Foundation (Grant agreement no. DNRF106)

    CH in stellar atmospheres: an extensive linelist

    Get PDF
    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 magnitudes in the λ=\lambda=3000 -- 5500 \AA\ range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data.Comment: 33pages, 15 figures, accepted in A&A external data available at http://www.astro.ulb.ac.be/~spectrotools

    Molecular characterization of multidrug-resistance in Gram-negative bacteria from the Peshawar teaching hospital, Pakistan

    Get PDF
    Extended-spectrum β-lactamases, carbapenemases, 16S rRNA methylases conferring pan-drug aminoglycoside resistance and colistin resistance were investigated among Gram-negative bacteria recovered from clinical samples (infections) from 200 individuals hospitalized at the Khyber Teaching Hospital of Peshawar, north Pakistan, from December 2017 to March 2018. Out of 65 isolates recovered, 19% were carbapenem resistant and 16% carried a bla NDM-1 gene, confirming the widespread distribution of NDM producers in this country. The association of the NDM carbapenem-resistance determinant, together with the extended-spectrum β-lactamase CTX-M-15 and 16S rRNA methylases, was frequent, explaining the multidrug-resistance pattern observed. All isolates remained susceptible to colistin
    corecore