1,114 research outputs found
Antioxidant Therapy Does Not Reduce Pain in Patients with Chronic Pancreatitis: The ANTICIPATE Study
Background & Aims: We investigated whether antioxidant therapy reduces pain and improves quality of life in patients with chronic pancreatitis. Methods: We performed a double-blind, randomized, controlled trial that compared the effects of antioxidant therapy with placebo in 70 patients with chronic pancreatitis. Patients provided 1 month of baseline data and were followed up for 6 months while receiving either Antox version 1.2 (Pharma Nord, Morpeth, UK) or matched placebo (2 tablets, 3 times/d). The primary analysis was baseline-adjusted change in pain score at 6 months, assessed by an 11-point numeric rating scale. Secondary analyses included alternative analyses of clinic and diary pain scores, scores on quality-of-life tests (the EORTC-QLQ-C30, QLQ-PAN28, EuroQOL EQ-5D, and EQ visual analog score), levels of antioxidants, use of opiates, and adverse events. Analyses, reported by intention to treat, were prospectively protocol-defined. Results: After 6 months, pain scores reported to the clinic were reduced by 1.97 from baseline in the placebo group and by 2.33 in the antioxidant group but were similar between groups (−0.36; 95% confidence interval, −1.44 to 0.72; P = .509). Average daily pain scores from diaries were also similar (3.05 for the placebo group, 2.93 for the antioxidant group, a difference of 0.11; 95% confidence interval, 1.05–0.82; P = .808). Measures of quality of life were similar between groups, as was opiate use and number of hospital admissions and outpatient visits. Blood levels of vitamin C and E, β-carotene, and selenium were increased significantly in the antioxidant group. Conclusi1ons: In patients with painful chronic pancreatitis of predominantly alcoholic origin, antioxidant therapy did not reduce pain or improve quality of life, despite causing a sustained increase in blood levels of antioxidants. Trial registration: ISRCTN-21047731
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
The Ising-Kondo lattice with transverse field: an f-moment Hamiltonian for URu2Si2?
We study the phase diagram of the Ising-Kondo lattice with transverse
magnetic field as a possible model for the weak-moment heavy-fermion compound
URu2Si2, in terms of two low-lying f singlets in which the uranium moment is
coupled by on-site exchange to the conduction electron spins. In the mean-field
approximation for an extended range of parameters, we show that the conduction
electron magnetization responds logarithmically to f-moment formation, that the
ordered moment in the antiferromagnetic state is anomalously small, and that
the Neel temperature is of the order observed. The model gives a qualitatively
correct temperature-dependence, but not magnitude, of the specific heat. The
majority of the specific heat jump at the Neel temperature arises from the
formation of a spin gap in the conduction electron spectrum. We also discuss
the single-impurity version of the model and speculate on ways to increase the
specific heat coefficient. In the limits of small bandwidth and of small
Ising-Kondo coupling, we find that the model corresponds to anisotropic
Heisenberg and Hubbard models respectively.Comment: 20 pages RevTeX including 5 figures (1 in LaTeX, 4 in uuencoded EPS),
Received by Phys. Rev. B 19 April 199
Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles
The fragile structure of chondritic-porous interplanetary dust particles (CP-
IDPs) and their minimal parent-body alteration have led researchers to believe
these particles originate in comets rather than asteroids where aqueous and
thermal alteration have occurred. The solar elemental abundances and
atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the
return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this
hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs
and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We
analyzed ~300 nanograms of Wild 2 material - three orders of magnitude more
material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation
state of these two samples of material are >2{\sigma} different: the CP-IDPs
are more oxidized than the Wild 2 grains. We conclude that comet Wild 2
contains material that formed at a lower oxygen fugacity than the parent body,
or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do
not appear to be consistent with the origin of CP-IDPs. However, comets that
formed from a different mix of nebular material and are more oxidized than Wild
2 could be the source of CP-IDPs.Comment: Earth and Planetary Science Letters, in pres
Magnetic Coherence in Cuprate Superconductors
Recent inelastic neutron scattering (INS) experiments on
LaSrCuO observed a {\it magnetic coherence effect}, i.e.,
strong frequency and momentum dependent changes of the spin susceptibility,
, in the superconducting phase. We show that this effect is a direct
consequence of changes in the damping of incommensurate antiferromagnetic spin
fluctuations due to the appearance of a d-wave gap in the fermionic spectrum.
Our theoretical results provide a quantitative explanation for the weak
momentum dependence of the observed spin-gap. Moreover, we predict {\bf (a)} a
Fermi surface in LaSrCuO which is closed around up
to optimal doping, and {\bf (b)} similar changes in for all cuprates
with an incommensurate magnetic response.Comment: 5 pages, 4 figures, Fig.3 is in colo
Speleothems Reveal 500,000-year History of Siberian Permafrost
Soils in permafrost regions contain twice as much carbon as the atmosphere, and permafrost has an important influence on the natural and built environment at high northern latitudes. The response of permafrost to warming climate is uncertain and occurs on time scales longer than those assessed by direct observation. We dated periods of speleothem growth in a north-south transect of caves in Siberia to reconstruct the history of permafrost in past climate states. Speleothem growth is restricted to full interglacial conditions in all studied caves. In the northernmost cave (at 60°N), no growth has occurred since Marine Isotopic Stage (MIS) 11. Growth at that time indicates that global climates only slightly warmer than today are sufficient to thaw extensive regions of permafrost
Penultimate Deglacial Sea-Level Timing from Uranium/Thorium Dating of Tahitian Corals
The timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial. We found, by means of uranium/thorium dating of fossil corals, that sea level during the penultimate deglaciation had risen to similar to 85 meters below the present sea level by 137,000 years ago, and that it fluctuated on a millennial time scale during deglaciation. This indicates that the penultimate deglaciation occurred earlier with respect to NHI than the last deglacial, beginning when NHI was at a minimum
Idling Magnetic White Dwarf in the Synchronizing Polar BY Cam. The Noah-2 Project
Results of a multi-color study of the variability of the magnetic cataclysmic
variable BY Cam are presented. The observations were obtained at the Korean
1.8m and Ukrainian 2.6m, 1.2m and 38-cm telescopes in 2003-2005, 56
observational runs cover 189 hours. The variations of the mean brightness in
different colors are correlated with a slope dR/dV=1.29(4), where the number in
brackets denotes the error estimates in the last digits. For individual runs,
this slope is much smaller ranging from 0.98(3) to 1.24(3), with a mean value
of 1.11(1). Near the maximum, the slope becomes smaller for some nights,
indicating more blue spectral energy distribution, whereas the night-to-night
variability has an infrared character. For the simultaneous UBVRI photometry,
the slopes increase with wavelength from dU/dR=0.23(1) to dI/dR=1.18(1). Such
wavelength dependence is opposite to that observed in non-magnetic cataclysmic
variables, in an agreement to the model of cyclotron emission. The principal
component analysis shows two (with a third at the limit of detection)
components of variablitity with different spectral energy distribution, which
possibly correspond to different regions of emission. The scalegram analysis
shows a highest peak corresponding to the 200-min spin variability, its quarter
and to the 30-min and 8-min QPOs. The amplitudes of all these components are
dependent on wavelength and luminosity state. The light curves were fitted by a
statistically optimal trigonometrical polynomial (up to 4-th order) to take
into account a 4-hump structure. The dependences of these parameters on the
phase of the beat period and on mean brightness are discussed. The amplitude of
spin variations increases with an increasing wavelength and with decreasing
brightnessComment: 30pages, 11figures, accepted in Cent.Eur.J.Phy
- …