581 research outputs found

    The energy and stability of D-term strings

    Get PDF
    Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected.Comment: 18 pages. v2: minor changes and references adde

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b

    Wilson Loop, Regge Trajectory and Hadron Masses in a Yang-Mills Theory from Semiclassical Strings

    Full text link
    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luescher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models.Comment: 52 pages, latex 3 times, v3: references adde

    Perturbing gauge/gravity duals by a Romans mass

    Full text link
    We show how to produce algorithmically gravity solutions in massive IIA (as infinitesimal first order perturbations in the Romans mass parameter) dual to assigned conformal field theories. We illustrate the procedure on a family of Chern--Simons--matter conformal field theories that we recently obtained from the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page

    D-branes on general N=1 backgrounds: superpotentials and D-terms

    Full text link
    We study the dynamics governing space-time filling D-branes on Type II flux backgrounds preserving four-dimensional N=1 supersymmetry. The four-dimensional superpotentials and D-terms are derived. The analysis is kept on completely general grounds thanks to the use of recently proposed generalized calibrations, which also allow one to show the direct link of the superpotentials and D-terms with BPS domain walls and cosmic strings respectively. In particular, our D-brane setting reproduces the tension of D-term strings found from purely four-dimensional analysis. The holomorphicity of the superpotentials is also studied and a moment map associated to the D-terms is proposed. Among different examples, we discuss an application to the study of D7-branes on SU(3)-structure backgrounds, which reproduces and generalizes some previous results.Comment: 50 pages; v2: table of contents, some clarifications and references added; v3: typos corrected and references adde

    Supersymmetric D-branes and calibrations on general N=1 backgrounds

    Full text link
    We study the conditions to have supersymmetric D-branes on general {\cal N}=1 backgrounds with Ramond-Ramond fluxes. These conditions can be written in terms of the two pure spinors associated to the SU(3)\times SU(3) structure on T_M\oplus T^\star_M, and can be split into two parts each involving a different pure spinor. The first involves the integrable pure spinor and requires the D-brane to wrap a generalised complex submanifold with respect to the generalised complex structure associated to it. The second contains the non-integrable pure spinor and is related to the stability of the brane. The two conditions can be rephrased as a generalised calibration condition for the brane. The results preserve the generalised mirror symmetry relating the type IIA and IIB backgrounds considered, giving further evidence for this duality.Comment: 23 pages. Some improvements and clarifications, typos corrected and references added. v3: Version published in JHE

    The general (2,2) gauged sigma model with three--form flux

    Get PDF
    We find the conditions under which a Riemannian manifold equipped with a closed three-form and a vector field define an on--shell N=(2,2) supersymmetric gauged sigma model. The conditions are that the manifold admits a twisted generalized Kaehler structure, that the vector field preserves this structure, and that a so--called generalized moment map exists for it. By a theorem in generalized complex geometry, these conditions imply that the quotient is again a twisted generalized Kaehler manifold; this is in perfect agreement with expectations from the renormalization group flow. This method can produce new N=(2,2) models with NS flux, extending the usual Kaehler quotient construction based on Kaehler gauged sigma models.Comment: 24 pages. v2: typos fixed, other minor correction
    corecore